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FOREWORD

This volume is the next in a sequence of AAS/AIAA Astrodynamics Specialist Confer-
ence volumes which are published as a part of Advances in the Astronautical Sciences. Sev-
eral other sequences or subseries have been established in this series. Among them are:
Spaceflight Mechanics (published for the AAS annually), Guidance, Navigation, and Control
(annual), International Space Conferences of Pacific-basin Societies (ISCOPS, formerly
PISSTA), and AAS Annual Conference proceedings. Proceedings volumes for earlier con-
ferences are still available either in hard copy, CD ROM, or in microfiche form. The appen-
dix at the end of Part IV of the hard copy volume lists proceedings available through the
American Astronautical Society.

Astrodynamics 2015, Volume 156, Advances in the Astronautical Sciences, consists of
four parts totaling about 4,500 pages, plus a CD ROM which contains all the available pa-
pers in digital format. Papers which were not available for publication are listed on the di-
vider pages of each section in the hard copy volume and in the main linking file of the digi-
tal version of the volume. A chronological numerical index and an author index appear at
the end of the main linking file, and are appended to the fourth part of the volume.

In our proceedings volumes the technical accuracy and editorial quality are essentially
the responsibility of the authors. The session chairs and our editors do not review all papers
in detail; however, format and layout are improved when necessary by the publisher.

We commend the general chairs, technical chairs, session chairs and the other partici-
pants for their role in making the conference such a success. We would also like to thank
those who assisted in organizational planning, registration and numerous other functions re-
quired for a successful conference.

The current proceedings are valuable to keep specialists abreast of the state of the art;
however, even older volumes contain some articles that have become classics and all vol-
umes have archival value. This current material should be a boon to aerospace specialists.

AAS/AIAAASTRODYNAMICS VOLUMES

Astrodynamics 2015 appears as Volume 156, Advances in the Astronautical Sciences.
This publication presents the complete proceedings of the AAS/AIAA Astrodynamics Con-
ference 2015.

Astrodynamics 2013, Volume 150, Advances in the Astronautical Sciences, Eds. S.B.
Broschart et al., 3532p, three parts plus a CD ROM Supplement.
Astrodynamics 2011, Volume 142, Advances in the Astronautical Sciences, Eds. H. Schaub
et al., 3916p, four parts plus a CD ROM Supplement.
Astrodynamics 2009, Volume 135, Advances in the Astronautical Sciences, Eds. A.V. Rao
et al., 2446p, three parts plus a CD ROM Supplement.
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Astrodynamics 2007, Volume 129, Advances in the Astronautical Sciences, Eds. R.J.
Proulx et al., 2892p, three parts plus a CD ROM Supplement.
Astrodynamics 2005, Volume 123, Advances in the Astronautical Sciences, Eds. B.G.
Williams et al., 2878p, three parts plus a CD ROM Supplement.
Astrodynamics 2003, Volume 116, Advances in the Astronautical Sciences, Eds. J. de
Lafontaine et al., 2746p, three parts plus a CD ROM Supplement.
Astrodynamics 2001, Volume 109, Advances in the Astronautical Sciences, Eds. D.B.
Spencer et al., 2592p, three parts.
Astrodynamics 1999, Volume 103, Advances in the Astronautical Sciences, Eds. K.C.
Howell et al., 2724p, three parts.
Astrodynamics 1997, Volume 97, Advances in the Astronautical Sciences, Eds. F.R. Hoots
et al., 2190p, two parts.
Astrodynamics 1995, Volume 90, Advances in the Astronautical Sciences, Eds. K.T.
Alfriend et al., 2270p, two parts; Microfiche Suppl., 6 papers (Vol. 72 AAS Microfiche Series).
Astrodynamics 1993, Volume 85, Advances in the Astronautical Sciences, Eds. A.K. Misra
et al., 2750p, three parts; Microfiche Suppl., 9 papers (Vol. 70 AAS Microfiche Series)
Astrodynamics 1991, Volume 76, Advances in the Astronautical Sciences, Eds. B. Kaufman
et al., 2590p, three parts; Microfiche Suppl., 29 papers (Vol. 63 AAS Microfiche Series)
Astrodynamics 1989, Volume 71, Advances in the Astronautical Sciences, Eds. C.L.
Thornton et al., 1462p, two parts; Microfiche Suppl., 25 papers (Vol. 59 AAS Microfiche
Series)
Astrodynamics 1987, Volume 65, Advances in the Astronautical Sciences, Eds. J.K.
Soldner et al., 1774p, two parts; Microfiche Suppl., 48 papers (Vol. 55 AAS Microfiche
Series)
Astrodynamics 1985, Volume 58, Advances in the Astronautical Sciences, Eds. B. Kaufman
et al., 1556p, two parts; Microfiche Suppl. 55 papers (Vol. 51 AAS Microfiche Series)
Astrodynamics 1983, Volume 54, Advances in the Astronautical Sciences, Eds. G.T. Tseng
et al., 1370p, two parts; Microfiche Suppl., 41 papers (Vol. 45 AAS Microfiche Series)
Astrodynamics 1981, Volume 46, Advances in the Astronautical Sciences, Eds. A.L.
Friedlander et al., 1124p, two parts; Microfiche Suppl., 41 papers (Vol. 37 AAS Microfiche
Series)
Astrodynamics 1979, Volume 40, Advances in the Astronautical Sciences, Eds. P.A. Penzo
et al., 996p, two parts; Microfiche Suppl., 27 papers (Vol. 32 AAS Microfiche Series)
Astrodynamics 1977, Volume 27, AAS Microfiche Series, 73 papers
Astrodynamics 1975, Volume 33, Advances in the Astronautical Sciences, Eds., W.F.
Powers et al., 390p; Microfiche Suppl., 59 papers (Vol. 26 AAS Microfiche Series)
Astrodynamics 1973, Volume 21, AAS Microfiche Series, 44 papers
Astrodynamics 1971, Volume 20, AAS Microfiche Series, 91 papers

AAS/AIAA SPACEFLIGHTMECHANICS VOLUMES
Spaceflight Mechanics 2015, Volume 155, Advances in the Astronautical Sciences, Eds.
Roberto Furfaro et al., 3626p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2014, Volume 152, Advances in the Astronautical Sciences, Eds.
Roby S. Wilson et al., 3848p., four parts, plus a CD ROM supplement.
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Spaceflight Mechanics 2013, Volume 148, Advances in the Astronautical Sciences, Eds.
S. Tanygin et al., 4176p., four parts, plus a CD ROM supplement.
Spaceflight Mechanics 2012, Volume 143, Advances in the Astronautical Sciences, Eds.
J.V. McAdams et al., 2612p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2011, Volume 140, Advances in the Astronautical Sciences, Eds.
M.K. Jah et al., 2622p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2010, Volume 136, Advances in the Astronautical Sciences, Eds.
D. Mortari et al., 2652p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2009, Volume 134, Advances in the Astronautical Sciences, Eds.
A.M. Segerman et al., 2496p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2008, Volume 130, Advances in the Astronautical Sciences, Eds.
J.H. Seago et al., 2190p., two parts, plus a CD ROM supplement.
Spaceflight Mechanics 2007, Volume 127, Advances in the Astronautical Sciences, Eds.
M.R. Akella et al., 2230p., two parts, plus a CD ROM supplement.
Spaceflight Mechanics 2006, Volume 124, Advances in the Astronautical Sciences, Eds.
S.R. Vadali et al., 2282p., two parts, plus a CD ROM supplement.
Spaceflight Mechanics 2005, Volume 120, Advances in the Astronautical Sciences, Eds.
D.A. Vallado et al., 2152p., two parts, plus a CD ROM supplement.
Spaceflight Mechanics 2004, Volume 119, Advances in the Astronautical Sciences, Eds.
S.L. Coffey et al., 3318p., three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2003, Volume 114, Advances in the Astronautical Sciences, Eds.
D.J. Scheeres et al., 2294p, three parts, plus a CD ROM supplement.
Spaceflight Mechanics 2002, Volume 112, Advances in the Astronautical Sciences, Eds.
K.T. Alfriend et al., 1570p, two parts.
Spaceflight Mechanics 2001, Volume 108, Advances in the Astronautical Sciences, Eds.
L.A. D’Amario et al., 2174p, two parts.
Spaceflight Mechanics 2000, Volume 105, Advances in the Astronautical Sciences, Eds.
C.A. Kluever et al., 1704p, two parts.
Spaceflight Mechanics 1999, Volume 102, Advances in the Astronautical Sciences, Eds.
R.H. Bishop et al., 1600p, two parts.
Spaceflight Mechanics 1998, Volume 99, Advances in the Astronautical Sciences, Eds.
J.W. Middour et al., 1638p, two parts; Microfiche Suppl., 2 papers (Vol. 78 AAS Microfiche
Series).
Spaceflight Mechanics 1997, Volume 95, Advances in the Astronautical Sciences, Eds.
K.C. Howell et al., 1178p, two parts.
Spaceflight Mechanics 1996, Volume 93, Advances in the Astronautical Sciences, Eds.
G.E. Powell et al., 1776p, two parts; Microfiche Suppl., 3 papers (Vol. 73 AAS Microfiche
Series).
Spaceflight Mechanics 1995, Volume 89, Advances in the Astronautical Sciences, Eds.
R.J. Proulx et al., 1774p, two parts; Microfiche Suppl., 5 papers (Vol. 71 AAS Microfiche
Series).
Spaceflight Mechanics 1994, Volume 87, Advances in the Astronautical Sciences, Eds. J.E.
Cochran, Jr. et al., 1272p, two parts.
Spaceflight Mechanics 1993, Volume 82, Advances in the Astronautical Sciences, Eds.
R.G. Melton et al., 1454p, two parts; Microfiche Suppl., 2 papers (Vol. 68 AAS Microfiche
Series).
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Spaceflight Mechanics 1992, Volume 79, Advances in the Astronautical Sciences, Eds.
R.E. Diehl et al., 1312p, two parts; Microfiche Suppl., 11 papers (Vol. 65 AAS Microfiche
Series).
Spaceflight Mechanics 1991, Volume 75, Advances in the Astronautical Sciences, Eds. J.K.
Soldner et al., 1353p, two parts; Microfiche Suppl., 15 papers (Vol. 62 AAS Microfiche
Series).

All�of�these�proceedings�are�available�from�Univelt,�Inc.,�P.O.�Box�28130,�San�Diego,�
California�92198�(Web�Site:�http://www.univelt.com),�publishers�for�the�AAS.

Robert H. Jacobs, Series Editor
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PREFACE

The 2015 AAS/AIAA Astrodynamics Specialist Conference was held at the Vail Cas-
cade Resort, Vail, Colorado between August 11–13, 2015. The meeting was sponsored by
the American Astronautical Society (AAS) Space Flight Mechanics Committee and
co-sponsored by the American Institute of Aeronautics and Astronautics (AIAA)
Astrodynamics Technical Committee. Approximately 260 people registered for the meeting;
attendees included engineers, scientists, and mathematicians representing government agen-
cies, the military services, industry, and academia from the United States and abroad.

There were 254 technical papers presented in 28 sessions on topics related to
space-flight mechanics and astrodynamics. The special sessions on Space Situational Aware-
ness, Asteroid and Non-Earth Orbiting Missions, High Performance Computing and Space
Missions: New Horizons MESSENGER and Mars Reconnaissance Orbiter were well re-
ceived and strongly attended. The meeting included various social events, including the wel-
come reception on Sunday, August 9, and the Awards Banquet on Tuesday, August 11,
2015.

The editors extend their gratitude to the Session Chairs who made this meeting suc-
cessful: Ossama Abdelkhalik, Maruthi Akella, Nitin Arora, Brent Barbee, Angela Bowes,
Jonathan Brown, Thomas Carter, Suman Chakravorty, Kyle DeMars, Atri Dutta, Carolin
Frueh, Kohei Fujimoto, Rees Fullmer, Roberto Furfaro, Liam Healy, Marcus Holzinger, Fe-
lix Hoots, Kathleen Howell, Islam Hussein, David Hyland, Simon Julier, Mark Karpenko,
Daniel Litton, Alfred Lynam, James McAdams, Craig McLaughlin, Jay McMahon, Robert
Melton, Jeff Parker, Glenn Peterson, Minh Phan, Marcin Pilinski, Christopher Roscoe, Ryan
Russell, Hanspeter Schaub, David Spencer, Christopher Spreen, Thomas Starchville, Nathan
Strange, Jeffrey Stuart, Sergei Tanygin, Srinivas R. Vadali, David Vallado, Ryan Weisman,
Bong Wie, Bobby Williams, Jacob Williams, Roby Wilson, Renato Zanetti. Our gratitude
also goes to Felix Hoots, Kathleen Howell and Puneet Singla for their guidance, support and
assistance in the successful organization of the conference.

Dr. Manoranjan Majji Dr. Geoff G. Wawrzyniak
AAS Technical Chair AAS General Chair
Dr. James D. Turner Dr. William Todd Cerven
AIAA Technical Chair AIAAGeneral Chair
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AAS 15-500

NEW CONSOLIDATED FILES FOR EARTH ORIENTATION

PARAMETERS AND SPACE WEATHER DATA

David A. Vallado* and TS. Kelso†

Earth Orientation Parameter (EOP) and Space Weather data are critical data elements for 
numerical propagation and space operations. Since CSSI first began assembling consoli-
dated files of EOP and space weather data in 2005, we have continually sought to im-
prove the accuracy of that process. A recent effort reexamined all the sources and added 
additional logic to permit quick estimation of long range solar cycle values and providing 
missing indices where they could be reliably estimated. This paper provides detailed doc-
umentation concerning the assembly and rationale for choices made as well as accuracy 
plots for predicted values.  

[View Full Paper] 
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AAS 15-537

UPDATED ANALYTICAL PARTIALS FOR COVARIANCE

TRANSFORMATIONS AND OPTIMIZATION

David A. Vallado* and Salvatore Alfano†

Covariance estimates are becoming more widely available as flight dynamics operations 
work towards greater accuracy. Investigators have looked at how covariance matrices are 
propagated, to include orbital state formats and coordinate systems. Various equations to 
convert between orbital state formats and satellite coordinate systems are essential for 
proper use and analysis. The literature contains many examples. Vallado (2003) present-
ed a complete set of equations, but advised that a few inconsistencies were found. We 
have corrected those errors and provide the results. Test results are given for several cas-
es, and MatLab code is available.
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AAS 15-539

ANGLES-ONLY ALGORITHMS

FOR INITIAL ORBIT DETERMINATION REVISITED

Gim J. Der*

This paper presents numerical results to address the historical questions: 
1. How accurate was the 1801 Ceres data of Piazzi? 
2. Did Laplace compute any Ceres orbit? 
3. How accurate was the 1801 Ceres orbit computed by Gauss? 
4. Why the angle-only problem remains a great challenge over 200 years? 

This author’s 2012 AMOS paper provided 10 numerical examples and marked a new 
range-solving angles-only algorithm that can consistently determine the correct range and 
initial perturbed orbit of any unknown object in all orbit regimes without guessing. This 
new algorithm allows optical sensors to be used for efficient and cost-effective catalog 
maintenance and catalog building. 
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AAS 15-555

UPDATING POSITION DATA FROM UNBOUNDED

SERENDIPITOUS SATELLITE STREAKS*

Charlie T. Bellows,† Gary M. Goff,‡ Jonathan T. Black§

Richard G. Cobb** and Alan L. Jennings††

Reliable Space Situational Awareness (SSA) is a recognized requirement in the current 
congested, contested, and competitive environment of space operations. A shortage of 
available sensors and reliable data sources are some current limiting factors for maintain-
ing SSA. Alternative methods are sought to enhance current SSA, including utilizing 
non-traditional data sources to perform basic SSA catalog maintenance functions. This 
work examines the feasibility and utility of performing positional updates for a Resident 
Space Object (RSO) using metric data obtained from RSO streaks gathered by astronom-
ical telescopes. The focus of this work is on processing data from streaks that cross com-
pletely through the astronomical image. The methodology developed can also be applied 
to dedicated SSA sensors to extract data from serendipitous streaks gathered while ob-
serving other RSOs.  
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AAS 15-571

BOUNDING COLLISION PROBABILITY UPDATES

William Todd Cerven*

Over the last couple of decades, the probability of collision (Pc) has been established as 
the dominant metric for evaluating satellite close approaches. However, the use of Pc by 
decision-makers has been limited due at least partially to its non-intuitive and often wild 
variations between catalog updates. It simply does not show the same consistency that 
relative miss geometry updates show relative to predicted uncertainties. This paper pre-
sents a method for predictively computing probabilities and confidence bounds on how 
the Pc will change with an update.

[View Full Paper] 
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AAS 15-575

GAUSSIAN MIXTURE APPROXIMATION OF THE BEARINGS-

ONLY INITIAL ORBIT DETERMINATION LIKELIHOOD FUNCTION

Mark L. Psiaki,* Ryan M. Weisman† and Moriba K. Jah‡

A method is developed to approximate the bearings-only orbit determination likelihood 
function using a Gaussian mixture to incorporate information about an admissible region. 
The resulting probability density function can provide the a priori information for a 
Gaussian mixture orbit determination filter. The new technique starts with a nonlinear 
batch least-squares solution. The solution enforces soft constraints on an admissible re-
gion defined in terms of minimum periapsis and maximum apoapsis. This admissible re-
gion information can compensate for poor observability from a short arc of bearings-only 
data. Although this soft-constrained solution lies in or near the admissible region, it does 
not characterize that region well. It provides a starting point to develop a Gaussian mix-
ture approximation of the batch least-squares likelihood function as modified through 
multiplication by a finite-support function that is zero outside the admissible region and 
equal to one in that region. This Gaussian mixture is optimized to fit the resulting proba-
bility density in the 2-dimensional subspace of position/velocity space that has the most 
uncertainty. This optimal fitting allows the Gaussian mixture to use a low number of 
mixands while fitting the finite-support probability density function well. By approximat-
ing the product of a finite-support function and the original likelihood function, the new 
method gains the capability to transition smoothly between regimes where the admissibil-
ity constraints dominate, i.e., high-altitude/short-measurement-arc cases, and those where 
they are irrelevant, i.e., low-altitude/long-measurement-arc cases.
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AAS 15-577

THE PROBABILISTIC ADMISSIBLE REGION

WITH ADDITIONAL CONSTRAINTS*

Christopher W. T. Roscoe,† Islam I. Hussein,† Matthew P. Wilkins†

and Paul W. Schumacher, Jr.‡

The admissible region is defined as the set of physically acceptable orbits (i.e., orbits 
with negative energies). Given additional constraints on orbital semimajor axis, eccen-
tricity, etc., the admissible region is further constrained, resulting in the constrained ad-
missible region (CAR). Based on known statistics of the measurement process, the hard 
constraints are replaced by a probabilistic representation. This results in the probabilistic 
admissible region (PAR), which can be used for orbit initiation in Bayesian tracking. Ad-
ditional constraints are incorporated, by considering some given statistics over inclination 
and right ascension of the ascending node. This results in a four-dimensional PAR distri-
bution. Noting that the concepts presented are general and can be applied to any meas-
urement scenario, the idea is illustrated using a short-arc, angles-only observation scenar-
io. 
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AAS 15-579

COLLISION RISK METRICS FOR LARGE DISPERSION CLOUDS 

DURING THE LAUNCH COLA GAP*

Alan B. Jenkin†

Standard launch collision avoidance (COLA) methods are based on ellipsoidal and 
Gaussian models of the position dispersion clouds of launched objects such as upper 
stages and payload satellites. During the COLA gap, which is the time interval between 
the end of the launch COLA screening and the start of on-orbit COLA screening, the dis-
persion clouds can become very large, non-ellipsoidal, and non-Gaussian. A method for 
computing collision risk metrics during the COLA gap based on kernel density estimation 
has been developed. The method enables the determination of a smooth analytical repre-
sentation of the distribution of conjunctions from a Monte Carlo representation of the 
dispersion cloud. This enables the use of detailed launch vehicle simulation results and 
avoids the need to make assumptions on the dispersion cloud distribution. Two COLA 
gap metrics are computed: containment inside the dispersion cloud and probability of col-
lision. The basic theory behind the method is first discussed. Results are then presented 
for sample launch cases, including variation of dispersion cloud containment and colli-
sion probability with time and launch window opportunity. Sensitivity of the metrics to 
the number of Monte Carlo points and screening volume is determined. 
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AAS 15-581

VOLUMETRIC ENCOUNTER ANALYSIS ENHANCEMENTS

Salvatore Alfano* and Daniel Oltrogge†

Presented here is an improved planning and characterization tool that can be used to es-
timate the satellite encounter operational tempo for a given orbit against a satellite cata-
log. The spherical encounter volume in our original work is replaced with an ellipsoid 
that is constant in size, shape, and orientation in the satellite’s Radial-InTrack-
CrossTrack frame. For a given pair of satellites we accomplish this by defining a travel-
ing ellipsoid about the second satellite’s orbit and assessing if/when the first satellite’s 
orbit traverses it. To ensure that no encounter is missed, the ellipsoid is moved along the 
second satellite’s circular or elliptical orbit in increments of true anomaly corresponding 
to intrack movement much smaller than the ellipsoid’s minor axis. An incremental de-
termination of encounter probability is made if/when the first satellite’s orbit track con-
tacts the ellipsoid. When this takes place, the orbit true anomalies extant at ellipsoid entry 
and exit are captured for both satellites and converted to their respective mean anomaly 
ranges. The likelihood that both satellites will simultaneously be inside that encounter 
region is then determined from these ranges. In addition to determining probability, the 
method also estimates the number of expected encounters over a given time span. The 
method is valid for both coplanar and non-coplanar orbits. However, our assumption of 
uniformly distributed relative in-track positions is not applicable in all satellite pairings. 
This method is useful in identifying such regions as graveyard orbits that are least likely 
to produce encounters. It can also be used to estimate how often neighboring satellites 
will trigger volumetric warnings when considering a candidate orbit. We make a limited 
version of this tool publicly available through a non-subscriber website Graphical User 
Interface, where only spherical encounter regions in LEO circular orbits are considered. 
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AAS 15-583

TRACK-TO-TRACK ASSOCIATION

USING INFORMATION THEORETIC CRITERIA*

Islam I. Hussein,† Christopher W. T. Roscoe,† Matthew P. Wilkins†

and Paul W. Schumacher, Jr.‡

There are three primary types of data association problems of interest in space surveil-
lance: the observation-to-track association (OTTA) problem, the track-to-track associa-
tion (TTTA) problem, and the observation-to-observation association (OTOA) problem. 
In this paper, we build on recent work to further investigate the use of information theo-
retic criteria to solve the TTTA problem, in which we have multiple uncorrelated tracks 
(UCTs) to be tested for association against a given set of tracks given at a different (usu-
ally previous) time instance. Both the tracks and the UCTs are uncertain and are probabil-
istically described using multivariate normal distributions. This allows for a closed-form 
solution based on the unscented transform and on information divergence for Gaussian 
distributions. We will establish relationship to the covariance-based track association 
(CBTA) technique and compare the performance of the two methods in Monte Carlo 
simulations. 
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AAS 15-639

MINIMIZATION OF THE KULLBACK-LEIBLER DIVERGENCE

FOR NONLINEAR ESTIMATION

Jacob E. Darling* and Kyle J. DeMars†

A nonlinear approximate Bayesian filter, named the minimum divergence filter (MDF), is 
proposed in which the true state density is approximated by an assumed density. The pa-
rameters of the assumed density are found by minimizing the Kullback-Leibler diver-
gence of the assumed density with respect to the true density that is defined by either the 
Chapman-Kolmogorov equation or Bayes’ Rule for the predictor and corrector steps, re-
spectively. When an assumed Gaussian density is used and the system dynamics and 
measurement model possess additive Gaussian-distributed noise, the predictor of the 
MDF is identical to the predictor used under the Kalman framework, and the corrector 
defines the mean and covariance of the posterior Gaussian density as the first and second 
central moments of the posterior defined by Bayes’ Rule. Because the MDF works for 
arbitrary densities, it can also quantify the temporal and measurement evolution of the 
parameters of an assumed directional state density. Simulations are shown to compare the 
MDF to standard Kalman-type filters, as well as the ability of the MDF to correct the pa-
rameters of an assumed Gauss-Bingham density given a von Mises-distributed line-of-
sight measurement. 
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AAS 15-648

ANALYSIS AND COMPARISON ON UKF AND BLS

FOR ORBIT DETERMINATION

Lu Deng,* Xiucong Sun† and Chao Han‡

Based on BeiDou-2 constellation navigation, properties of a relatively new method, un-
scented Kalman filter and the most classical method, batch least squares method are dis-
cussed. First, the research progresses of these two estimation methods are summarized, 
and then the principles of unscented Kalman filter and batch least squares method are 
briefly reviewed. Sensitivity analysis of orbit determination results to different measure-
ment errors, measurement data-sampling periods, and dynamic model errors, are made 
with classical unscented Kalman filter and batch least squares method. By comparison n, 
conclusions are drawn about choice of estimation method in constellation navigation. 
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AAS 15-670

IMPROVING GEOLOCATION ACCURACY

THROUGH REFINED SATELLITE EPHEMERIS ESTIMATION

IN AN ILL-CONDITIONED SYSTEM

Jeroen L. Geeraert,* Brandon A. Jones† and Jay W. McMahon†

Commercial geolocating systems claim a capability of estimating the position of an 
Earth-based signal to within 5 km. Ephemeris inaccuracies are generally the primary 
source of error in geolocation and is therefore a main focus of this paper. Using a two-
satellite technique of time difference of arrival (TDOA), frequency difference of arrival 
(FDOA), and an improved ephemeris estimate, we are able to show geolocating capabili-
ties down to several hundred meters using real data. High fidelity dynamic and measure-
ment models are used with both a batch and a square root information filter (SRIF) in a 
two-step process. First, using known calibrator transmitters, the ephemeris is estimated. 
Second, using this ephemeris an unknown transmitter is geolocated with a consider batch 
filter (CBF). Due to the geometry of the satellite, transmitter and receiver setup, however, 
the system is ill-conditioned and introduces sensitivities, especially in the ballistic coeffi-
cient type parameters representative of solar radiation pressure (SRP). In spite of those 
sensitivities, the reduced ephemeris error significantly improves the geolocation accura-
cy. 
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AAS 15-673

A CORRECTNESS RATIO METRIC FOR ASSESSING DATA 

ASSOCIATION METHODS IN SPACE SURVEILLANCE*

Joshua T. Horwood,† Jeffrey M. Aristoff,‡ David J. C. Beach,§  

P. Alex Ferris,** Alex D. Mont,** Navraj Singh** and Aubrey B. Poore††

This paper describes a metric for assessing the performance of data association methods 
used in space surveillance tracking systems that facilitates regression testing, benchmark 
trade studies, and comparisons between the many different paradigms for data association 
brought forth by the community. The proposed correctness ratio metric gives a macro 
perspective on how a tracking system is performing, provides an honest assessment of 
performance since it penalizes both for incorrectly associated observations (cross-tags) as 
well as for missing observations, and streamlines the communication of results and per-
formance to decision makers. 
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AAS 15-675

MULTIPLE FRAME ASSIGNMENT SPACE TRACKER (MFAST): 

RESULTS ON UCT PROCESSING*

Jeffrey M. Aristoff,† David J. C. Beach,‡ P. Alex Ferris,§

Joshua T. Horwood,** Alex D. Mont,** Navraj Singh** and Aubrey B. Poore††

Numerica’s Multiple Frame Assignment Space Tracker (MFAST) is a multi-sensor multi-
regime space object tracking system that is presently undergoing transition to an opera-
tional environment to support improved uncorrelated track (UCT) processing. This paper 
communicates recent results from MFAST that were obtained by processing real-world 
historical radar and optical data from the Space Surveillance Network (SSN) in a “UCT 
processing mode.” The results demonstrate that MFAST generally achieves a correctness 
ratio of 93% or higher, with no cross-tags, and is able to process the data on a consumer-
grade laptop computer in real-time or faster. 
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AAS 15-717

AN UPPER BOUND ON HIGH SPEED SATELLITE COLLISION 

PROBABILITY WHEN ONLY ONE OBJECT HAS POSITION 

UNCERTAINTY INFORMATION

Joseph H. Frisbee, Jr.*

Upper bounds on high speed satellite collision probability, PC, have been investigated. 
Previous methods assume an individual position error covariance matrix is available for 
each object. The two matrices being combined into a single, relative position error covar-
iance matrix. Components of the combined error covariance are then varied to obtain a 
maximum PC. If error covariance information for only one of the two objects was availa-
ble, either some default shape has been used or nothing could be done. An alternative is 
presented that uses the known covariance information along with a critical value of the 
missing covariance to obtain an approximate but potentially useful Pc upper bound. 

[View Full Paper] 
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AAS 15-723

INITIAL RELATIVE ORBIT DETERMINATION ANALYTICAL 

ERROR COVARIANCE AND PERFORMANCE ANALYSIS

FOR PROXIMITY OPERATIONS

Baichun Gong,* David K. Geller† and Jianjun Luo‡

This research furthers the development of a closed-form solution to the angles-only initial 
relative orbit determination problem for close-in proximity operations when the camera 
offset from the vehicle center-of-mass allows for range observability. Emphasis is placed 
on developing closed-form error covariance equations for the initial relative orbit state 
solution and verification of the analytic covariance equations through systematic nonline-
ar Monte Carlo simulation of typical rendezvous missions with the International Space 
Station. Closed-form analytic estimates of the relative state error covariance based on an-
gle measurement errors, attitude knowledge errors and camera center-of-mass offset un-
certainties for three and more observations are obtained. A two-body Monte Carlo simu-
lation system is used to evaluate the performance of the closed-form relative state estima-
tion algorithms and associated closed-form covariance equations. The sensitivity of the 
solution accuracy to spacecraft trajectories, camera offset, camera accuracy, attitude 
knowledge, and the time-interval between measurements is presented and discussed. 

[View Full Paper] 
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AAS 15-725

REALISTIC COVARIANCE GENERATION

IN THE PRESENCE OF MANEUVERS

Travis Lechtenberg,* Joshua Wysack,† Syed Hasan‡ and William Guit§

Operational collision threat characterization is now an essential component of space mis-
sion operations. As the size of the space object catalog increases, more sophisticated col-
lision threat characterization and collision avoidance strategies must be implemented. In 
order to accurately characterize collision risk, a realistic covariance must be used when 
computing collision probability. In order to generate realistic covariance, expected ma-
neuver performance must be incorporated while modelling the spacecraft’s predicted 
state uncertainty. This paper describes an approach for generating realistic predictive co-
variance for NASA’s Earth Science Mission Operations (ESMO) satellite fleet.
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AAS 15-726

ORBIT DETERMINATION FOR PARTIALLY UNDERSTOOD 

OBJECT VIA MATCHED FILTER BANK

Timothy S. Murphy,* Marcus J. Holzinger† and Brien Flewelling‡

With knowledge of a space object’s orbit, the matched filter is an image processing tech-
nique which allows low signal-to-noise ratio objects to be detected. Many space situa-
tional awareness research efforts have looked at ways to characterize the probability den-
sity function of a partially understood space object. When prior knowledge is only con-
strained to a probability density function, many matched filter templates could be repre-
sentative of the space object, necessitating a bank of matched filters. This paper develops 
the measurement dissimilarity metric which is then applied to partition a general prior set 
of orbits. A method for hypothesis testing the result of a matched filter for a space object 
is developed. Finally, a framework for orbit determination based on the matched filter 
result is developed. Simulation shows that the analytic results enable more efficient com-
putation and a better framework for implementing matched filters. 
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AAS 15-730

EFFICIENT TRAJECTORY PROPAGATION

FOR ORBIT DETERMINATION PROBLEMS

Javier Roa* and Jesús Peláez†

Regularized formulations of orbital motion apply a series of techniques to improve the 
numerical integration of the orbit. Despite their advantages and potential applications lit-
tle attention has been paid to the propagation of the partial derivatives of the correspond-
ing set of elements or coordinates, required in many orbit-determination scenarios and 
optimization problems. This paper fills this gap by presenting the general procedure for 
integrating the state-transition matrix of the system together with the nominal trajectory 
using regularized formulations and different sets of elements. The main difficulty comes 
from introducing an independent variable different from time, because the solution needs 
to be synchronized. The correction of the time delay is treated from a generic perspective 
not focused on any particular formulation. The synchronization using time-elements is 
also discussed. Numerical examples include strongly-perturbed orbits in the Pluto system, 
motivated by the recent flyby of the New Horizons spacecraft, together with a geocentric 
flyby of the NEAR spacecraft. 
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AAS 15-733

PROBABILITY DENSITY TRANSFORMATIONS ON ADMISSIBLE 

REGIONS FOR DYNAMICAL SYSTEMS

Johnny L. Worthy III* and Marcus J. Holzinger†

The admissible region as used for initial orbit determination is often expressed as a uni-
form multivariate probability density function (PDF). A multivariate PDF may be trans-
formed and expressed in an alternate state space if the total probability is preserved over 
the transformation. This paper applies the general multivariate PDF transformation meth-
od to an admissible region to develop the conditions required for such a transformation. 
Because the probability must be preserved, it is shown that in general an admissible re-
gion PDF may not be transformed by a nonlinear transformation unless specific mapping 
conditions are met over all the state space volume. If this condition is not met then the 
transformation of an admissible region PDF yields incorrect probabilities over the state 
space. Further, it is also shown that if each state in an admissible region is locally observ-
able then the constant gradient condition is lifted. 
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AAS 15-738

UNCUED SATELLITE INITIAL ORBIT DETERMINATION

USING SIGNALS OF OPPORTUNITY

Johnny L. Worthy III* and Marcus J. Holzinger†

This paper investigates the application of signal of opportunity based multilateration to 
generate initial orbit estimates. Using at least 4 observer stations, the time differential of 
arrival of signals of opportunity can be measured and used to determine a 3D position 
estimate of the source of the signal with some associated covariance on the position esti-
mate. While this solution gives the position of the object, admissible region theory may 
be applied to bound the possible velocity states belonging to a particular source. Two 
constraints are considered and analytically derived for the time differential of arrival 
problem to constraint the possible velocity solutions for a given position estimate. Once a 
joint admissible region is formed from these constraints, it may be sampled and used as 
an initial distribution for a particle filter. This work shows an example application of par-
ticle filter initiation with a time differential of arrival measurement based admissible re-
gion. 
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AAS 15-746

ORBIT DETERMINATION FOR

GEOSYNCHRONOUS SPACECRAFT ACROSS UNOBSERVED

STATION-KEEPING MANEUVERS

Bryan C. Brown*

Accurately determining the orbits of geosynchronous spacecraft is challenging at best, 
and is even more difficult when such a spacecraft undergoes a station-keeping maneuver 
during which no observations are taken. Often even the times and kind of maneuver are 
unknown (apse pair, node pair, hybrid, etc.), except in the spacecraft operations center. 
Even so, it is often desirable to be able to include both pre-maneuver and post-maneuver 
observations in the orbit determination process. We discuss one method for modeling and 
using such maneuver models in batch Weighted Least Squares orbit determination. 

Section 1 is an introduction and overview of the problem. 

Section 2 presents the concept of operations used in the investigation. 

Section 3 discusses the ad hoc maneuver model. The model requires accurate pre- and 
post-maneuver state vectors and masses, as well as ignition and burnout times and con-
vergence parameters, and generates a table of maneuver accelerations and masses. Note 
that the process is not applicable to near real time operations because of the input re-
quirements. 

Section 4 discusses the enhancements to the Naval Research Laboratory’s Orbit Covari-
ance and Error ANalysis (OCEAN) orbit determination tool to use the maneuver model. 
OCEAN solves for the usual state vector parameters as well as one scale factor for each 
component of the table of maneuver accelerations. 

Section 5 discusses the preliminary results. The errors in topocentric position are typical-
ly reduced from scores of millidegrees (without modeling the maneuver) to one or two 
millidegrees (often better) across the data arc. 
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AAS 15-752

ON COMPARING PRECISION ORBIT SOLUTIONS

OF GEODETIC SATELLITES GIVEN SEVERAL

ATMOSPHERIC DENSITY MODELS

John G. Warner* and Krysta M. Lemm*

Many aspects of a satellite mission are directly impacted by the ability to precisely de-
termine and accurately predict the satellite’s orbit through high precision orbit determina-
tion. While gravity forces are typically well understood, the modeling of non-
conservative forces to a high precision, which is critical to high precision orbit determina-
tion of satellites in low Earth orbit, is often more challenging. A number of current and 
historically recommended atmospheric density models are examined using the Naval Re-
search Laboratory’s Orbit Covariance Estimation and ANalysis (OCEAN) tool. High 
precision laser ranging data to geodetic satellites were used as test cases to evaluate the 
solution accuracy and predictive capabilities of the atmospheric density models. Orbit fit 
and prediction comparison metrics are generated for multiple atmospheric density mod-
els. Generally, the Jacchia-Bowman 2008 model results in predictive orbit solutions that 
more closely follow the definitive orbit solution over the entire 30 day prediction span. 
Surprisingly, the exponential atmospheric density model, while the simplest model, pre-
forms almost as well over the first ten days of orbit prediction. 
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AAS 15-767

SENSOR BIAS ESTIMATION AND UNCERTAINTY 

QUANTIFICATION STRATEGIES FOR SPACE OBJECT TRACKING

Eamonn J. Moyer,* Ryan M. Weisman† and Manoranjan Majji‡

Measurements from any given sensor are corrupted by noise and are biased. The prob-
lems of estimation and uncertainty quantification of sensor biases are investigated in this 
paper. Several approaches to these problems are explored, and their success in the mitiga-
tion of bias is investigated. Filtering without compensating for bias, augmented filtering, 
and consider filtering approaches are studied and their results are compared. In addition, 
smoothing results are presented. The approaches have their own merits and drawbacks, 
and their pros and cons are discussed within and recommendations are made as to when 
to use which approach. Statistical consistency checks are provided to show when the fil-
ter is not performing as desired. The focus of this paper is on estimating biases that are 
assumed to be constant, but biases with a time varying structure can be accommodated if 
a sampling rate higher than the Nyquist frequency is available. 
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AAS 15-776

OBTAINING NAVIGATION OBSERVABLES

FROM HIGH DEFINITION TELEVISION TOWERS

Ryan E. Handzo,* Austin Anderson,† Jorge Cervantes,‡ Jeffrey S. Parker,§

Dirk Grunwald** and George H. Born††

This paper considers the navigation observables that can be obtained from HDTV signals 
using the ATSC transmission standard. The ATSC transmission standard has multiple 
components that allow for range and Doppler navigation observables to be extracted. 
This paper looks at the structure of these observables as well as the types of hardware that 
are needed to obtain these observations. In addition, the paper will present a comparison 
between simulated signal data used in satellite navigation studies and real data collected 
using hardware on the ground. 
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AAS 15-778 

CHARACTERIZING THE EFFECTS OF

LOW ORDER PERTURBATIONS ON GEODETIC SATELLITE

PRECISION ORBIT DETERMINATION

Eric Eiler* and John G. Warner†

Satellite operations often rely on the ability to precisely determine and accurately predict 
the satellite’s orbit. Thus, there are numerous papers dedicated to developing methodolo-
gies for successful orbit determination. However, there are also lower order forces that 
act upon satellites that are not directly studied in detail. Two such phenomenon are stud-
ied here; perturbations due to the Lunar geopotential, and lower order relativistic correc-
tions. The effects of both on orbit determination are studied with US Naval Research La-
boratory’s Orbit Covariance Estimation and ANalysis (OCEAN) tool. High precision la-
ser ranging data of geodetic satellites are used as test cases to evaluate the solution accu-
racy and predictive capabilities. Orbit fit quality and prediction comparison metrics are 
generated for a number of lunar gravity field models, as well as including or excluding 
several lower order relativistic corrections. Recommendations are made based on the re-
sults. 
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AAS 15-780

THE IMPACT OF INTERSATELLITE RANGE MEASUREMENTS ON 

THE ORBIT DETERMINATION OF SATELLITE CONSTELLATIONS

Byron T. Davis* and Brian C. Gunter†

For many satellite remote sensing and communications applications, particularly those 
involving a formation or constellation of satellites, having precise knowledge of the satel-
lite’s position in both an absolute and relative sense is essential. With this in mind, this 
study examines potential gains in precise orbit determination (POD) when additional in-
tersatellite range observations are combined with standard Global Navigation Satellite 
System (GNSS) observations. The methodology behind the combination approach is de-
scribed and illustrated through a series of simulated case studies involving two or more
satellites in low Earth orbit, using realistic assumptions on measurement noise. The re-
sults suggest that substantial improvements in the POD for all satellites in the constella-
tion can be obtained with even intermittent ranging measurements. In addition, the preci-
sion of the intersatellite ranging measurements were limited to 1 mm or higher, with ad-
ditional constraints on the intersatellite range distance, to represent levels possible from a 
nanosatelilte (cubesat) platform. By improving the positioning capabilities of cubesat 
constellations, new Earth observing missions utilizing cubesatellite constellation architec-
tures will become feasible. 
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AAS 15-807

INTERPLANETARY ORBIT UNCERTAINTY PROPAGATION

USING POLYNOMIAL SURROGATES

Marc Balducci,* Juliana Feldhacker,* Jonathon Smith† and Brandon Jones‡

Approximations for the time-varying distribution of interplanetary orbit state uncertainty 
have traditionally relied on Gaussian assumptions or computationally expensive Monte 
Carlo (MC) methods. This generally leads to reduced accuracy of the propagated uncer-
tainty in the first case, or an undesirable, and often intractable, number of orbit propaga-
tions in the latter. This paper considers the application of polynomial chaos (PC) for in-
terplanetary orbit uncertainty propagation when there is one or more planetary or natural 
satellite flybys. The technique of compressive sampling is used in order to improve the 
tractability of the problem without sacrificing accuracy. The presented PC-based method
of approximating the a posteriori probability density function requires no fundamental 
simplifying assumptions, reduces the computation time compared to MC, and produces a 
sensitivity analysis for the quantities of interest. 
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AAS 15-506 

PERFORMANCE OF VARIABLE STEP NUMERICAL 

INTEGRATION ACROSS ECLIPSE BOUNDARY CROSSINGS

FOR HAMR OBJECTS*

André Horstmann,† Vitali Braun‡ and Heiner Klinkrad‡

The numerical integration process across eclipse boundaries will experience a rapid 
change in lighting condition, which may introduce large numerical errors due to the rapid 
changes of acceleration caused by solar radiation pressure. The acceleration of objects 
with high area-to-mass ratios (HAMR) is strongly affected by solar radiation pressure and 
may hold discontinuities. A typical behavior of variable-step multi-step integrators is the 
strong reduction or even a re-initialization of step size in the region of these eclipse cross-
ing. By adapting the Lundberg correction algorithm for a fixed step integrator to a varia-
ble step integrator, it is able to cross the eclipse boundaries without the need of a very 
small stepsize or even an integrator restart. Consequently, the overall performance of the 
integrator used with the propagator NEPTUNE was increased by 1% to � 2.7% for a 10-
day MEO (a � 20 000 km) orbit dependent on the number of eclipse boundary crossings. 
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AAS 15-508

EQUILIBRIUM POINTS OF ELONGATED CELESTIAL BODIES AS 

THE PERTURBED ROTATING MASS DIPOLE

Xiangyuan Zeng,* Junfeng Li,† Hexi Baoyin‡ and Kyle T. Alfriend§

The rotating mass dipole is adopted in this paper to approximate the gravitational field of 
the elongated celestial bodies. The equations of motion of the perturbed dipole model 
with oblateness of both primaries are derived to allow the existence of additional equilib-
rium points, including the points in the equatorial plane and in the plane xoz. Numerical 
simulations are performed to show the distribution of these equilibrium points along with 
zero-velocity curves around the dipole model. The effects of the oblateness of the prima-
ries on the topological structure are also discussed based on the variation of zero-velocity 
curves. 
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AAS 15-510

FORMATION FLYING CONSTANT LOW-THRUST CONTROL 

MODEL BASED ON RELATIVE ORBIT ELEMENTS

Xinwei Wang,* Yinrui Rao,† Sihang Zhang‡ and Chao Han§

A new set of relative orbit elements (ROE) is used to establish a piecewise constant low-
thrust control model for the satellites formation flying. An optimal objective function is 
defined in the control strategies of initialization, reconfiguration and configuration 
maintenance, which could be modified in terms of the formation requirements, such as 
the transfer error. The function extreme value has been solved by a nonlinear program-
ming algorithm for the purpose of determining the propulsion time and scale. Further-
more, considering the impact of perturbations, a closed-loop feedback control law for 
configuration maintenance is derived. Numerical results indicate that the formation re-
configuration and configuration maintenance have been achieved through the low-thrust 
control method. 
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AAS 15-511

SEMI-ANALYTICAL SPACECRAFT DYNAMICS

AROUND PLANETARY MOONS

J. Cardoso dos Santos,* J. P. S. Carvalho,†

R. Vilhena de Moraes‡ and A. F. B. A. Prado§

Several missions that propose to explore systems of planetary moons will require high-
inclined orbits for gravity and surface mapping. In this context, this work aims to perform 
a search for these orbits considering gravitational disturbances on a spacecraft’s orbit 
around different planetary moons. An analytical model for the third-body perturbation is 
developed, considering it in an eccentric-inclined orbit. The non-sphericity of some plan-
etary moons is also considered. The dynamic of these orbits is explored by numerical 
simulations. The results satisfied the requirements for missions and complement the ana-
lytical studies found in the literature. Several orbits with inclinations in the order of 60° 
are found, which are below the critical inclination, but still gives a good coverage. 
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AAS 15-512

EAST-WEST GEO SATELLITE STATION-KEEPING WITH 

DEGRADED THRUSTER RESPONSE

Yunhe Wu,* Stoian Borissov† and Daniele Mortari‡

The higher harmonic terms of Earth’s gravitational potential slowly modify the nominal 
longitude of Geostationary Earth Orbit (GEO) satellites while the third-body presence 
(Moon and Sun) mainly affects its latitude. For this reason GEO satellites periodically 
need to perform station-keeping maneuvers, namely, East-West and North-South maneu-
vers to compensate for longitudinal and latitudinal variations, respectively. During the 
operational lifetime of GEO satellites, the thrusters’ response when commanded to per-
form these maneuvers slowly departs from the original nominal impulsive behavior. This 
paper addresses the practical problem of how to perform reliable East-West station-
keeping maneuvers when thruster response is degraded. The need for contingency inter-
vention from ground based satellite operators is reduced by breaking apart the scheduled 
automatic station keeping maneuvers into smaller maneuvers. Orbital alignment and atti-
tude are tracked on-board during and in between sub-maneuvers, and any off nominal 
variations are corrected for with subsequent maneuvers. These corrections are particular-
ly important near the end of lifetime of GEO satellites, where thruster response farthest 
from nominal performance. 
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AAS 15-514

GEOSYNCHRONOUS DEBRIS CONJUNCTION

LEAD-TIME REQUIREMENTS FOR AUTONOMOUS

LOW-THRUST DISPOSAL GUIDANCE

Paul V. Anderson* and Hanspeter Schaub†

Autonomous, low-thrust guidance for active disposal of geosynchronous debris, subject 
to collision avoidance with the local debris population, is studied. A bisection method is 
employed to determine trajectory modifications to avoid a conjuncting debris object by a 
range of distances, assuming a range of collision lead times. A parametric study is per-
formed, in which re-orbit thrust accelerations are varied from 10–6 to 10–3 m/s2, to 
demonstrate how the continuous-thrust level impacts the required lead time to achieve a 
desired debris miss distance. The lowest thrust levels considered show that a 6-12 hour 
lead time is required to achieve a 1-10 km debris separation at the predicted collision 
time. 
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AAS 15-516

TRAJECTORY AND STATE TRANSITION MATRIX

ANALYTIC CONTINUATION ALGORITHMS

James D. Turner,* Abdullah Alnaqeb† and Ahmad Bani Younes‡

Series-based analytic continuation models have recently been shown to provide highly 
efficient and accurate trajectory propagation algorithms for celestial mechanics applica-
tions. A nonlinear change of variables is defined that enables one to generate recursive 
formulas for propagating vector-valued trajectories. Leibnitz product rule provides the 
core tool for generating arbitrary order time derivative models the position, velocity, and 
state transition matrix, which are propagated by summing Taylor series models. Cubic 
nonlinearities are handled by introducing sequential variable transformations. Solution 
accuracy and efficiency are controlled by two unknowns: (i) the time-step for the propa-
gation, and (ii) the number of terms to be retained in the series approximation. Large time 
steps are enabled by introducing a variable step-size method that maintains sub-
millimeter precision for orbit propagation. This work addresses the algorithmic exten-
sions required for simultaneously generating the trajectory and state transition matrix so-
lutions. Sparsity in the state transition matrix derivative calculations is exploited in the 
recursive formulation. The state transition group properties are used to assemble the seg-
ment solutions. A first order state transition matrix algorithm is formulated and tested. 
Numerical examples are presented that demonstrate the accuracy and effectiveness of the 
new series algorithm. Comparisons are provided for simulation run time and accuracy 
when comparing the algorithm with standard numerical integration methods. 
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AAS 15-518

USING TAYLOR DIFFERENTIAL ALGEBRA

IN MISSION ANALYSIS: BENEFITS AND DRAWBACKS

Vincent Morand*, Jean Claude Berges, François Thevenot,

Emmanuel Bignon,† Pierre Mercier and Vincent Azzopardi

After having proved its potential in the field of particle beam physics, Taylor Differential 
Algebra (TDA) is being more and more used for space applications. As an example, the 
issues of Near Earth Objects encounters, orbital conjunctions and even long term orbit 
propagation can be analyzed using Taylor Differential Algebra. The field of mission 
analysis seems particularly suited for the use of TDA, since the uncertainty on inputs are 
generally high, parametrical studies are often required and computational efficiency is 
necessary. The paper details the TDA engine used in CNES (Centre National d’Etudes 
Spatiales, French space agency) and gives example of its applications for mission analy-
sis. 
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AAS 15-524

ORBIT DETERMINATION AND DIFFERENTIAL-DRAG CONTROL 

OF PLANET LABS CUBESAT CONSTELLATIONS

Cyrus Foster,* Henry Hallam† and James Mason‡

We present methodology and mission results from orbit determination of Planet Labs 
nanosatellites and differential-drag control of their relative motion. Orbit determination 
(OD) is required on Planet Labs satellites to accurately predict the positioning of satel-
lites during downlink passes and we present a scalable OD solution for large fleets of 
small satellites utilizing two-way ranging. In the second part of this paper, we present 
mission results from relative motion differential-drag control of a constellation of satel-
lites deployed in the same orbit. 
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AAS 15-538

AN ANALYTIC PERTURBED LAMBERT ALGORITHM

FOR SHORT AND LONG DURATIONS

Gim J. Der*

This paper presents an analytic perturbed multi-rev Lambert algorithm for any duration 
using a targeting technique with analytic perturbed state transition matrices. Since state 
transition matrices are commonly used in linear motion, it is intuitive not to use state 
transition matrices for long duration. When targeting by one step for the whole long dura-
tion is not possible, the given long duration can be divided into multiple small steps. As 
long as the perturbed state transition matrices can provide accurate targeting solutions 
with small time steps, an analytic perturbed multi-rev Lambert algorithm for long dura-
tions can be developed and used for rapid cataloging. 
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AAS 15-540

HYBRID METHODS AROUND THE CRITICAL INCLINATION

Montserrat San-Martín,* Iván Pérez† and Juan F. San-Juan‡

In this work we apply a new approach, hybrid perturbation theory, to the problem of orbit 
propagation near the critical inclination. The critical inclination is a singular value which 
appears in both the direct and inverse transformation of the elimination of the perigee 
when the zonal harmonic J2 of the geopotential is considered, thus preventing its applica-
tion. We consider four different hybrid orbit propagators based on a closed-form second-
order Brouwer-like analytical theory of the main problem, with different orders of ap-
proximation in J2, complemented with an additive Holt-Winters method, and analyze 
their behavior near the critical inclination. 
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AAS 15-541

ANALYTICAL APPROXIMATIONS TO

THE GENERALIZATION OF THE KEPLER EQUATION

Rosario López,* Juan F. San-Juan† and Denis Hautesserres‡

The generalized Kepler equation is a transcendental non-linear equation which appears in 
the zonal problem of the artificial satellite theory when the Krylov-Bogoliubov-
Mitropolsky method is employed. In this work, the Lie-Deprit method is used to apply 
Lagrange’s inversion theorem in order to solve the generalized Kepler equation. For 
small eccentricities, the analytical approximate solution yields similarly accurate results 
to numerical methods. For the rest of eccentricities, we discuss the applicability of this 
approximation as an initial guess in the numerical method used to solve the generalized 
Kepler equation. 
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AAS 15-544

AN INTRUSIVE APPROACH TO UNCERTAINTY PROPAGATION 

IN ORBITAL MECHANICS BASED ON TCHEBYCHEFF

POLYNOMIAL ALGEBRA

Annalisa Riccardi,* Chiara Tardioli† and Massimiliano Vasile‡

The paper presents an intrusive approach to propagate uncertainty in orbital mechanics. 
The approach is based on an expansion of the uncertain quantities in Tchebycheff series
and a propagation through the dynamics using a generalised polynomial algebra. Tcheby-
cheff series expansions offer a fast uniform convergence with relaxed continuity and 
smoothness requirements. The paper details the proposed approach and illustrates its ap-
plicability through a set of test cases considering both parameter and model uncertainties. 
This novel intrusive technique is then compared against its non-intrusive counterpart in 
terms of approximation accuracy and computational complexity. 
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AAS 15-572

MODE ANALYSIS FOR LONG-TERM BEHAVIOR

IN A RESONANT EARTH–MOON TRAJECTORY

Cody Short,* Kathleen Howell,† Amanda Haapala‡ and Donald Dichmann§

Trajectory design in chaotic regimes allows for the exploitation of system dynamics to 
achieve certain behaviors. For the Transiting Exoplanet Survey Satellite (TESS) mission, 
the selected science orbit represents a stable option well-suited to meet the mission objec-
tives. Extended, long-term analysis of particular solutions nearby in the phase space re-
veals transitions into desirable terminal modes induced by natural dynamics. This inves-
tigation explores the trajectory behavior and borrows from flow-based analysis strategies 
to characterize modes of the motion. The goal is to identify mechanisms that drive the 
spacecraft into a particular mode and supply conditions necessary for such transitions. 
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AAS 15-603

REVIEW OF MISSION DESIGN AND NAVIGATION FOR

THE VAN ALLEN PROBES PRIMARY MISSION

Justin A. Atchison* and Fazle E. Siddique*

NASA’s two Van Allen Probes spacecraft completed their primary mission on November 
1, 2014 following two years of successful operation. This paper reviews their operations 
with respect to mission design and navigation. In terms of mission design, all require-
ments were met with no trajectory correction maneuvers. The observed orbit evolution 
matches predictions to a high accuracy. Three unplanned collision avoidance maneuvers 
were performed. Of the potential collisions, roughly 70% of the objects were associated 
with debris. In terms of navigation, historical overlap comparisons indicate that the 7 day 
prediction accuracy is better than 9 km for 95% of the samples, and the mission’s 22 km 
accuracy requirement is always satisfied. Compared to the ensemble of overlap errors, the 
computed prediction covariance is inaccurately high. This error is likely caused by the 
method by which the software accommodated an unmodeled variation in the Doppler da-
ta associated with each spacecraft’s antenna phase center not being located along the 
spin-axis. 

[View Full Paper] 

                                                                
* Senior Engineer, Space Exploration Sector, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns 
Hopkins Road, Laurel, Maryland 20723, U.S.A. 

80

http://www.univelt.com/book=5361


AAS 15-604

ORBIT AND ATTITUDE STABILITY CRITERIA

OF SOLAR SAIL ON THE DISPLACED ORBIT

Junquan Li,* Mark A. Post† and George Vukovich‡

The polar regions of the Earth are of particular interest to spacecraft missions in terms of 
monitoring, provision of communications and resource exploration, and biasing the cov-
erage provided in northern latitudes also has commercial advantages. This paper studies 
orbit and attitude stability criteria for a solar sail spacecraft that could serve this region 
and possible strategies for acquisition using the limited resources to miniaturized space-
craft without a propulsion system. A coupled orbit and attitude stability analysis for a 
spacecraft using solar radiation pressure for displaced orbits provides results based on 
stability and control-lability criteria. 
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AAS 15-610

SATELLITE FORMATION-KEEPING ABOUT LIBRATION POINTS 

IN THE PRESENCE OF SYSTEM UNCERTAINTIES

Mai Bando,* Hamidreza Nemati† and Shinji Hokamoto‡

This paper studies a control law to stabilize the orbital motion in the vicinity of an unsta-
ble equilibrium points and periodic orbits in the circular-restricted three-body problem. 
Utilizing the eigenstructure of the system, the fuel efficient formation flying controller 
via linear quadratic regulator (LQR) is developed. Then the chattering attenuation sliding 
mode controller (CASMC) is designed and analyzed for the in-plane motion of the circu-
lar circular-restricted three-body problem. Simulation studies are conducted for the Sun-
Earth L2 point and a halo orbit around it. The total velocity change required to reach the 
halo orbit as well as to maintain the halo orbit is calculated. Simulation results show that 
the chattering attenuation sliding mode controller has good performance and robustness 
in the presence of unmodeled nonlinearity along the halo orbit with relatively small fuel 
consumption.
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AAS 15-615

ISOLATING BLOCKS AS COMPUTATIONAL TOOLS IN THE 

CIRCULAR RESTRICTED THREE-BODY PROBLEM*

Rodney L. Anderson,† Robert W. Easton‡ and Martin W. Lo†

Isolating blocks may be used as computational tools to search for the invariant manifolds of 
orbits and hyperbolic invariant sets associated with libration points while also giving addi-
tional insight into the dynamics of the flow in these regions. We use isolating blocks to in-
vestigate the dynamics of objects entering the Earth-Moon system in the circular restricted 
three-body problem with energies close to the energy of the L2 libration point. Specifically, 
the stable and unstable manifolds of Lyapunov orbits and the hyperbolic invariant set 
around the libration points are obtained by numerically computing the way orbits exit from 
an isolating block in combination with a bisection method. Invariant spheres of solutions in 
the spatial problem may then be located using the resulting manifolds. 
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AAS 15-618

END OF LIFE DISPOSAL FOR THREE LIBRATION POINT

MISSIONS THROUGH MANIPULATION OF THE JACOBI

CONSTANT AND ZERO VELOCITY CURVES

Jeremy D. Petersen* and Jonathan M. Brown†

The aim of this investigation is to determine the feasibility of mission disposal by insert-
ing the spacecraft into a heliocentric orbit along the unstable manifold and then manipu-
lating the Jacobi constant to prevent the spacecraft from returning to the Earth-Moon sys-
tem. This investigation focuses around L1 orbits representative of ACE, WIND, and 
SOHO. It will model the impulsive ΔV necessary to close the zero velocity curves after 
escape through the L1 gateway in the circular restricted three body model and also in-
clude full ephemeris force models and higher fidelity finite maneuver models for the 
three spacecraft. 
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AAS 15-626

DESIGN AND APPLICATIONS OF SOLAR SAIL PERIODIC 

ORBITS IN THE NON-AUTONOMOUS EARTH-MOON SYSTEM

Jeannette Heiligers,* Malcolm Macdonald† and Jeffrey S. Parker‡

Solar sailing has great potential for a range of high-energy and long duration missions in 
the Sun-Earth system. This paper extends this potential to the non-autonomous Earth-
Moon system through the use of a differential correction scheme, and by selecting suita-
ble in-plane and out-of-plane sail steering laws to develop new families of solar sail libra-
tion point orbits that are periodic with the Sun’s motion around the Earth-Moon system. 
New orbits include those that bifurcate from the natural Lyapunov, halo and eight-shaped 
orbit families at the first and second Lagrange points. The potential of these orbits is 
demonstrated by considering the performance of a subset of orbits for high-latitude Earth 
observations, lunar far-side communications, and lunar South Pole coverage. 
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AAS 15-632

SEP MISSION DESIGN SPACE FOR MARS ORBITERS

Ryan C. Woolley* and Austin K. Nicholas†

The advancement of solar-electric propulsion (SEP) technologies and larger, light-weight 
solar arrays offer a tremendous advantage to Mars orbiters in terms of both mass and 
timeline flexibility. These advantages are multiplied for round-trip orbiters (e.g. potential 
Mars sample return) where a large total ΔV would be required. In this paper we investi-
gate the mission design characteristics of mission concepts utilizing various combinations 
and types of SEP thrusters, solar arrays, launch vehicles, launch dates, arrival dates, etc. 
SEP allows for > 50% more mass delivered and launch periods of months to years. We 
also present the SEP analog to the ballistic Porkchop plot – the “Bacon” plot.
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AAS 15-637

DYNAMICAL EVOLUTION ABOUT ASTEROIDS WITH HIGH 

FIDELITY GRAVITY FIELD AND PERTURBATIONS MODELING

Andrea Colagrossi,* Fabio Ferrari,† Michèle Lavagna‡ and Kathleen Howell§

The paper presents different strategies to model the gravitational field in the vicinity of 
irregular celestial bodies, such as asteroids and comets. The gravitational attraction of 
these irregular objects has been modeled, through accurate shape discretization, with a 
constant density polyhedron or an ensemble of point masses. In the latter case, an optimi-
zation algorithm to distribute the mass elements within the volume of the body has been 
developed. All the different modeling techniques are compared in order to highlight their 
advantages and drawbacks. In addition, an extensive analysis of the results is performed 
with the purpose to find the model that has an optimal balance between level of accuracy 
and required computational effort. 
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AAS 15-657

THE EUROPA MISSION: MULTIPLE EUROPA FLYBY

TRAJECTORY DESIGN TRADES AND CHALLENGES

Try Lam,* Juan J. Arrieta-Camacho* and Brent B. Buffington*

With potential sources of water, energy and other chemicals essential for life, Europa is a 
top candidate for finding current life in our Solar System outside of Earth. This paper de-
scribes the current trajectory design concept for a multiple Europa flyby mission and dis-
cusses several trajectory design challenges. The candidate reference trajectory utilizes 
multiple Europa flybys while around Jupiter to enable near global coverage of Europa 
while balancing science requirements, radiation dose, propellant usage, and flight time. 
Trajectory design trades and robustness are also discussed. 
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AAS 15-661

COMPACT SOLUTION OF CIRCULAR ORBIT RELATIVE MOTION 

IN CURVILINEAR COORDINATES

Claudio Bombardelli,* Juan Luis Gonzalo† and Javier Roa†

A compact approximate solution of the highly non-linear relative motion in curvilinear 
coordinates is provided under the assumption of circular orbit for the chief spacecraft and 
moderately small inclination and eccentricity for the follower. The rather compact three-
dimensional solution, which employs time as independent variable, is obtained by alge-
braic manipulation of the individual Keplerian motions in curvilinear coordinates and 
Taylor expansion for small eccentricity of the follower orbit. Numerical test cases are 
conducted to show that the approximate solution can be effectively employed to extend 
the classical linear Clohessy-Wiltshire solution to include non-linear relative motion 
without significant loss of accuracy up to a limit of 0.4-0.5 in eccentricity and a few de-
grees in inclination. 
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AAS 15-663

ANALYTIC POWER SERIES SOLUTIONS FOR TWO-BODY AND 

J2–J6 TRAJECTORIES AND STATE TRANSITION MODELS

Kevin Hernandez,* Julie L. Read,* Tarek A. Elgohary,†

James D. Turner‡ and John L. Junkins§

Recent work has shown that two-body motion can be analytically modeled using analytic 
continuation models, which utilize kinematic transformation scalar variables that can be 
differentiated to an arbitrary order using the well-known Leibniz product rule. This 
method allows for large integration step sizes while still maintaining high accuracy. With 
these arbitrary order time derivatives available, an analytical Taylor series based solution 
may be applied to propagate the position and velocity vectors for the nonlinear two-body 
problem. This foundational method has been extended to demonstrate a highly effective 
variable step-size control for the analytic continuation Taylor series model. The current 
work builds on these earlier results by extending the analytic power series approach to 
trajectory calculations for two-body and J2–J6 gravity perturbation terms. 
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AAS 15-666

SEARCHING FOR MORE STABLE PERTURBED ORBITS

AROUND THE EARTH

Thais C. Oliveira* and Antonio F. B. A. Prado†

The goal of the present paper is to search for orbits around the Earth that are more stable, 
in the sense of presenting minimum variations with respect to a Keplerian initial orbit. 
This variation will be measured by the integral of the differences of the radius vector of 
the real perturbed orbit and the equivalent vector of the Keplerian orbit that starts at the 
same point. The search for stable orbits is carried out by making maps of the integral of 
the magnitude of the disturbing forces. Particularly, the effects of the semi-major axis and 
the eccentricity of the orbit in those mappings are studied. The disturbing forces consid-
ered here are the solar radiation pressure, the Luni-Solar perturbation and the zonal har-
monics J2 to J4. The results of these integrals are the velocity increment that the perturba-
tion delivers to the satellite. The possibility of using a solar sail to reduce the effects of 
the other perturbations acting on the satellite is considered using this approach and it 
shows to be a useful idea. 
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AAS 15-678

APPLICATIONS OF RELATIVE SATELLITE MOTION MODELING 

USING CURVILINEAR COORDINATE FRAMES

Alex Perez,* T. Alan Lovell† and David K. Geller‡

This paper compares various satellite relative motion solutions previously derived via 
nonlinear transformations from a curvilinear coordinate frame to a Cartesian frame. The 
solutions can be compared by creating difference contour plots that show the difference 
of the maximum position error between two solutions. These contours show regions 
where one solution has more accuracy over another solution according to the varying pa-
rameters used to create the difference contours. A relative maneuver targeting algorithm 
based on Lambert’s problem is developed using a cylindrical coordinate frame and com-
pared with known Cartesian and second order relative motion maneuver targeting algo-
rithms. The utility of formulating the relative maneuver targeting problem is shown and 
contour plots are created that show the maneuvering miss distance calculated by varying 
relevant relative motion parameters. 
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AAS 15-679

RELATIVE SATELLITE MOTION OPTIMAL CONTROL

USING CONVEX OPTIMIZATION

Alex Perez,* Jacob Gunther† and David K. Geller‡

Convex optimization theory is applied to relative satellite motion to determine the opti-
mal control profile for satellite rendezvous scenarios. The relative satellite rendezvous 
problem is shown to be convex when using the Hill-Clohessy Wiltshire linearized ordi-
nary differential equations as the governing dynamics. Several inequality constraints are 
imposed on the convex problem in order to simulate keep-out zones, rendezvous corri-
dors and navigation line-of-sight constraints. Several cases of satellite rendezvous are 
presented with different objective functions to briefly show the utility and robustness of 
the convex optimization algorithm applied to relative satellite rendezvous. 
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AAS 15-684

ANALYTICAL PERTURBATION THEORY FOR DISSIPATIVE 

FORCES IN TWO-POINT BOUNDARY VALUE PROBLEMS

Oier Peñagaricano Muñoa* and Daniel J. Scheeres†

An analytical perturbation technique for solving two-point boundary value problems is 
presented. The technique builds on previous work done in the perturbation theory for 
Hamilton’s principal function and used to analytically solve for the velocities in the per-
turbed targeting problem. The method presented extends to dissipative forces such as 
aerodynamic drag, and only requires the nominal two-body solution. Applications of the 
theory are found primarily in the fields of orbital mechanics and optimal control. The 
technique is validated through numerical simulations. 
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AAS 15-689

SPACE PARTITIONING STRUCTURES

FOR EFFICIENT STABILITY MAP GENERATION

Navid Nakhjiri*

Stable orbits are known candidates for designing long-term science missions in perturbed 
dynamical environments. Finding stable regions within a domain of phase space often 
requires a tedious investigation. Traditionally, a uniform sampling of initial states from 
phase-space is needed to generate a stability map, which reveals stable regions. However, 
an adaptive non-uniform grid can significantly reduce the computation efforts. In this pa-
per, a series of space partitioning structures have been explored for the purpose of adap-
tively generating a non-uniform grid that is dense near the boundaries of the stable re-
gions and sparse elsewhere. 
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AAS 15-691

CONVEX CONSTRAINTS ON STABILITY

FOR IMPULSIVE TRANSFER OPTIMIZATION

Eric Trumbauer* and Navid Nakhjiri†

Stable transfers have been proposed as a transfer strategy to guarantee mission recovery 
under the risk of maneuver or modeling errors. These transfers consist of a sequence of 
impulses such that the trajectory stays within the stable region of the dynamics at all 
times. As convex optimization becomes increasingly popular for both autonomous and 
ground based design, it is possible to include stability constraints directly into the prob-
lem formulation. This paper explores the derivation and application of second-order cone 
stability constraints and analyzes their effect on established convergence properties of 
these optimization methods. 
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AAS 15-713

EXPANSION OF DENSITY MODEL CORRECTIONS DERIVED 

FROM ORBIT DATA TO THE ANDE SATELLITE SERIES

Travis Lechtenberg,* Craig McLaughlin† and Harold Flanagan‡

Current techniques to estimate corrections to atmospheric density are expanded to the 
ANDE satellite series. These are tracked using satellite laser ranging, while having firmly 
established drag characteristics. These corrections yield estimated density corrections 
which in turn lead to better drag estimates, improved orbit determination and prediction, 
as well as an enhanced understanding of density variations in the thermosphere and exo-
sphere. This examination will give a better idea of obtainable improvements in atmos-
pheric density. Consideration will also be given to the effects of varying levels of geo-
magnetic and solar activity.
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AAS 15-731

HIGH ORDER TRANSFER MAP METHOD

AND GENERAL PERTURBATION TECHNIQUES

APPLIED TO PERTURBED KEPLERIAN MOTION

Roberto Armellin,* Alexander Wittig† and Juan Felix San Juan‡

The present international concern in space situational awareness has produced a renewed 
interest in efficient methods for propagation of catalogs of data. Recently, a new tech-
nique called high-order transfer map (HOTM) method has been proposed to deal with the 
problem of perturbed Keplerian dynamics. This technique is based on the numerical inte-
gration of a single orbital revolution in differential algebra arithmetic, yielding an analyt-
ical high order approximation of the true transfer map. It is then followed by its repeated 
analytical evaluation to advance the orbital propagation by several orbital periods. The 
main focus of this work is to extend the HOTM approach in the case of highly non-
autonomous perturbations and to compare it with analytical and semi-analytical propaga-
tors based on Lie transforms. Objects in Low Earth Orbit, Geosynchronous Transfer Or-
bit, and a Molniya orbit are used as test cases. 
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AAS 15-734

DEALING WITH UNCERTAINTIES

IN INITIAL ORBIT DETERMINATION

Roberto Armellin,* Pierluigi Di Lizia† and Renato Zanetti‡

A method to deal with uncertainties in initial orbit determination (IOD) is presented. This 
is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation 
uncertainties from the observation space to the state space. When a minimum set of ob-
servations is available, DA is used to expand the solution of the IOD problem in Taylor 
series with respect to measurement errors. When more observations are available, high 
order inversion tools are exploited to obtain full state pseudo-observations at a common 
epoch. The mean and covariance of these pseudo-observations are nonlinearly computed 
by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme 
is employed to update the current knowledge of the orbit. Angles-only observations are 
considered and simplified Keplerian dynamics adopted to ease the explanation. Three test 
cases of orbit determination of artificial satellites in different orbital regimes are present-
ed to discuss the feature and performances of the proposed methodology. 
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AAS 15-743

INVESTIGATING THE EVOLUTION OF PRACTICAL DISTANT 

RETROGRADE ORBITS UP TO 30,000 YEARS

Collin Bezrouk* and Jeffrey S. Parker†

This work studies the evolution of several Distant Retrograde Orbits (DROs) in the 
Earth-Moon system with varying sizes and inclinations over tens of thousands of years. 
This analysis is relevant for missions requiring a completely handsoff, long duration 
quarantine orbit, such as a Mars Sample Return mission or the Asteroid Redirect Mission. 
Four DROs, selected from four stable size regions, are propagated with quadruple preci-
sion arithmetic and a high fidelity dynamics model for 30,000 years. The evolution of the 
orbit size, shape, orientation, period, out-of-plane amplitude, and Jacobi constant are 
tracked. It was found that small DROs, with an x-amplitude of approximately 45,000 km 
or less decay in size and period largely due to the Moon’s solid tides. Larger DROs 
(62,000 km and up) are more influenced by the gravity of bodies external to the Earth-
Moon system, and remain bound to the Moon for significantly less time. 
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AAS 15-761

GRASP ALGORITHM FOR MULTI-RENDEZVOUS MISSION 

PLANNING WITH OPTIMIZED TRIP TIMES

Atri Dutta*

The paper considers the Greedy Random Adaptive Search Procedure to optimize a se-
quence of rendezvous maneuvers by a spacecraft with multiple targets. The algorithm 
consists of two phases: the first phase constructs feasible solutions of the problem, and 
the second phase performs local search about the constructed solution. In this paper, we 
focus on the problem of optimization of individual trip times to each target during the 
mission, where each individual transfer orbit is considered to be multi-revolution solution 
to the Lambert’s problem. We demonstrate our methodology using numerical examples 
for planar targets in a circular orbit. 
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AAS 15-770

SEARCHING FOR PERIODIC AND QUASI-PERIODIC ORBITS

OF SPACECRAFTS ON THE HAUMEA SYSTEM

Diogo M. Sanchez,* Antonio F. B. A. Prado† and Tadashi Yokoyama‡

In this work, we explore regions around the two moons of the dwarf planet Haumea, 
Namaka and Hi’iaka, in order to provide options for a mission to this system. Using a mod-
el with the perturbation of the Sun, Namaka and Hi’iaka, and the gravitational potential of 
Haumea up to degree and order four, we map the survival time of a spacecraft in a wide 
range of initials semi-major axis and inclination. Then, we found apparently stable orbits in 
the vicinity of Namaka and Hi’iaka. Finally, using the restricted three body problem, Poin-
caré sections were made in order to find periodic and quasi-periodic orbits around these 
two moons. 
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AAS 15-798

LONG TERM EVOLUTION OF THE ECCENTRICITY IN THE MEO 

REGION: SEMI-ANALYTICAL AND ANALYTICAL APPROACH

Florent Deleflie,* J. Daquin,† E. M. Alessi‡ and A. Rossi‡

We study the long term evolution of the mean eccentricity of trajectories within the MEO 
region, and in particular at altitudes corresponding to Galileo nominal or disposal cases, 
following a semi-analytical and an analytical approach. The model accounts for all the 
significant perturbations acting on the trajectories: zonal and tesseral parameters of the 
Earth’s gravity field, luni-solar attraction, atmospheric drag when relevant; we study the 
time evolution of the two components of the eccentricity vector, depending on the choice 
of the initial conditions: long period variations, that could even been seen as secular ef-
fects over some periods, are interpreted in terms of the influence of the luni-solar attrac-
tion. Maps of maximal eccentricity reached over less than 2 centuries are performed with 
the STELA s/w, and the role played by the � + 2� resonance is underlined. 
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AAS 15-799

OPTIMAL FORMATION DESIGN OF A MINIATURIZED

DISTRIBUTED OCCULTER/TELESCOPE IN EARTH ORBIT

Adam W. Koenig,* Simone D’Amico,† Bruce Macintosh‡ and Charles J. Titus§

This paper presents a novel formation design methodology for a miniaturized distributed 
occulter/telescope (mDOT) in earth orbit. In contrast to large-scale missions such as the 
New Worlds Observer or Exo-S (NASA), mDOT makes use of micro- and nano-satellites 
inertially aligned in earth orbit to reduce mission costs by orders of magnitude. Due to the 
small telescope aperture, this concept requires greater instrument integration time (or ob-
servation duration) in an environment with larger differential accelerations. As a conse-
quence, a formulation of delta-v optimal absolute and relative orbits represents a mission 
enabler. The key contributions of this paper stem from the fundamental idea that the del-
ta-v cost of observations can be optimized by allowing the formation to freely drift along 
the observation axis. First, this work presents an analytical expression of the delta-v cost 
of a pareto-optimal family of finite forced motion control maneuvers. Second, a method 
of selecting the initial argument of perigee and right ascension of the ascending node is 
presented that minimizes the deviation of the formation from its optimal configuration 
due to secular J2 effects. Furthermore, it is demonstrated through high-fidelity numerical 
simulations that the delta-v optimal configuration with respect to forced motion control is 
also globally delta-v optimal. Finally, these simulations are used to show that the total 
delta-v cost for a mission consisting of multiple observations of a single target is well 
within the capacity of current small satellite propulsion systems. 
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AAS 15-802

SEASONAL VARIATIONS OF THE JAMES WEBB SPACE

TELESCOPE ORBITAL DYNAMICS

Jonathan Brown,* Jeremy Petersen,† Benjamin Villac‡ and Wayne Yu§

While spacecraft orbital variations due to the Earth’s tilt and orbital eccentricity are well-
known phenomena, the implications for the James Webb Space Telescope present unique 
features. We investigate the variability of the observatory trajectory characteristics, and 
present an explanation of some of these effects using invariant manifold theory and local 
approximation of the dynamics in terms of the restricted three-body problem. 
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AAS 15-803

ANALYTICAL CONVERSION OF

MEAN ORBITAL ELEMENTS INTO OSCULATING ELEMENTS

FOR FROZEN ORBIT ABOUT ASTEROIDS

Inkwan Park* and Daniel J. Scheeres†

The analytical conversion algorithm of mean orbital elements’ space is discussed in this 

study. In particular, we apply the algorithm to map a frozen or quasi-frozen orbit defined in 
mean orbital elements’ space about asteroids into osculating elements’ space. We expect 

that frozen orbits become more applicable, such as introducing control law, through the 
analytical conversion. For this study, a perturbation theory is exploited in order to derive 
both an averaged (normalized) equation and a generating function. The suggested algo-
rithm is applied to two different perturbed Keplerian motions about asteroid 101955 Bennu. 
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AAS 15-502 

UNDAMPED PASSIVE ATTITUDE STABILIZATION AND ORBIT 

MANAGEMENT OF A 3U CUBESAT WITH DRAG SAILS

Siddharth S. Kedare* and Steve Ulrich†

This paper evaluates the effectiveness of drag sails on maintaining a ram-facing orienta-
tion for a 3U CubeSat in Equatorial Low Earth Orbit. The influence of varying the drag 
sail area and inertia tensor on the aerostabilization characteristics and orbit of the space-
craft is examined through computational modeling of the spacecraft dynamics in Matlab-
Simulink. The study also investigates the ability of a commercially available attitude con-
trol system to slew the spacecraft into a low-drag orientation to extend orbital lifetime. 
The results indicate that undamped aerostabilization of a 3U CubeSat is feasible, and 
provides acceptable conditions for limited scientific observation. In addition, the simula-
tion results demonstrate that the spacecraft is capable of entering and maintaining a low-
drag orientation for five days without reaction wheel saturation. 
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AAS 15-504

AN EPITAXIAL DEVICE FOR MOMENTUM EXCHANGE

WITH THE VACUUM STATE

David C. Hyland*

This paper re-examines the dynamic Casimir effect as a possible mechanism for propul-
sion. Previous investigations assumed mechanical motion of a mirror to generate thrust. 
In this case, because of the finite strength of materials and the high frequencies necessary, 
the amplitudes of motion must be restricted to the nanometer range. Here, we propose an 
epitaxial stack of transparent semiconductor laminae. Voltage is rapidly switched to suc-
cessive lamina, creating continuous, large amplitude motion of a reflective surface with-
out mechanical contrivances. The paper provides correct relativistic results for large am-
plitude motion. With meter-level magnitudes, propulsive forces are raised to significant 
levels. 
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AAS 15-509

INFLUENCE ANALYSIS OF THE IMPACTS AND FRICTIONS OF 

THE JOINTS OF THE VIBRATION ISOLATION PLATFORM

FOR CONTROL MOMENT GYROSCOPE

Zixi Guo,* Jingrui Zhang, Yao Zhang, Liang Tang† and Xin Guan 

This paper discusses the dynamic characteristics of the impacts and corresponding fric-
tions generated by the clearances of joints of vibration isolation platforms for control 
moment gyroscopes (CMGs) on spacecraft. A contact force model is applied using a non-
linear contact force model, and the frictions in the joints are considered in the dynamic 
analysis. First, the dynamic characteristics of a single isolation strut with spherical joints 
were studied, and joints with different initial clearance sizes were separately analyzed. 
Then, dynamic models of the vibration isolation platform for a CMG cluster with both 
perfect joints and joints with clearances were established. During the numeral simulation, 
joints with different elastic moduli were used to study the nonlinear characteristics. 
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AAS 15-525

GROUND INTENSITY DISTRIBUTION OF THE POWER STARTM

David C. Hyland*

Power StarTM is a space solar power satellite in the form of a spherical balloon deployed 
at geostationary altitude. The balloon is composed of a thin membrane upon which are 
printed solar cells and microwave patch antennas. Using retro-directive phased array 
technology, the latter devices beam microwave power to ground-based rectennas, desig-
nated by microwave beacons. Assuming that solar cells and antennas cannot occupy the 
same areas, randomized placement of the antennas is needed to avoid grating lobes. This 
paper precisely calculates the ground-plane power density distribution produced by the 
satellite with random antenna placement in response to a point-source beacon. 
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AAS 15-542

ON-ORBIT EXPERIENCE OF

FLYING TWO-WHEEL CONTROLLED SATELLITES

Johannes Hacker,* Peter C. Lai† and Jiongyu Ying‡

Following several reaction wheel on-orbit anomalies and ensuing lifetime extension of 
the Globalstar 2nd generation fleet, a hybrid control algorithm using two wheels and 
magnetic torque bars was developed and implemented in the satellites in low Earth orbit. 
Since the control torque by magnetics is much smaller than that by reaction wheel and its 
strength varies with satellite position and attitude on the orbit, satellite operations engi-
neers must take special care during station keeping, yaw slew, etc. This paper will present 
some on-orbit data and les-sons learned associated with this new hybrid control algo-
rithm. 
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AAS 15-549

FRACTIONAL ORDER CAYLEY TRANSFORMS

FOR DUAL QUATERNIONS BASED POSE REPRESENTATION

Daniel Condurache* and Adrian Burlacu†

This main goal of this research is the development of a new pose parametrization tech-
nique based on fractional order Cayley transforms. Our study is based on the properties 
of maps that link dual vectors with unitary dual quaternions. For the first time a complete 
parametrization framework is constructed, completely embeds multiple of the reported 
attitude parameterization Cayley maps and extends them towards pose parameterization. 
The novelty of our methods over existing solutions is discussed and the main advantages 
are revealed. 
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AAS 15-558

SPACECRAFT ATTITUDE TRACKING CONTROL BASED ON 

DIFFERENTIAL GEOMETRY THEORY

Jianjun Luo,* Zeyang Yin,† Baichun Gong‡ and Jianping Yuan§

This paper presents a novel methodology to solve the attitude tracking control problem of
a spacecraft system with external disturbances and parameters uncertainties. The new 
nonlinear control approach is based on differential geometry theory and Active Disturb-
ances Rejection Control (ADRC). For spacecraft attitude tracking error equations, exact 
linearization for the nonlinear system is realized through output feedback based on Lie 
derivation. The linearized system is controlled by means of ADRC, which is effective in 
external disturbances rejection. ADRC in linearized system is then mapped back to origi-
nal system to obtain the spacecraft attitude tracking control law based on differential ge-
ometry theory. In order to overcome the negative effect on the control system caused by 
parameter uncertainties, this approach is developed using Improved Particle Swarm Op-
timization (IPSO) algorithm to realize on-line parameters identification. Traditional PSO 
algorithm is improved using reliability factor to minimum the effect of external disturb-
ances on parameters identification. Numerical simulations are finally given to demon-
strate the performance of the proposed methodology. 

[View Full Paper] 

                                                                
* Professor, National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, 127 
Youyi West Road, Xi'an 710072, China. E-mail: jjluo@nwpu.edu.cn. Tel: +86 29 88493685. 
† Ph.D. Student, National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, 127 
Youyi West Road, Xi'an 710072, China. E-mail: aitao425@163.com. 
‡ Ph.D. Student, National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, 127 
Youyi West Road, Xi'an 710072, China. E-mail: 15002950116@163.com. 
§ Professor, National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, 127 
Youyi West Road, Xi'an 710072, China. E-mail: jyuan@nwpu.edu.cn. 

115

http://www.univelt.com/book=5393


AAS 15-573

ATTITUDE CONTROL OF A MODULAR NPU-PHONESAT

BASED ON SHAPE ACTUATION

Qiao Qiao,* Jianping Yuan,† Xin Ning‡ and Baichun Gong§

This paper investigates the attitude control of a modular NPU-PhoneSat based on shape 
actuation. The PhoneSat is composed of multiple blocks connected by active joints. Much 
like a falling cat can reorient itself in mid-air, this modular PhoneSat could reorient itself 
without changes in net angular momentum by altering the shape and instantaneous mass 
distribution during attitude maneuvers. Given size and cost constraints, the number of 
actuators should be limited. Thus, this paper focuses on the under-actuated case. Optimal 
attitude control method to steer the PhoneSat to the desired posture is proposed, with the 
objective to minimize the input energy. The inequality constraints are established based 
on the capacity of the actuator. Particle Swarm Optimization algorithm is employed to 
search the optimal control input to achieve the reorientation while satisfying the imposed 
constraints. The input torques is parametrized by the spline to guarantee that initial and 
final values of control input are zero. Simulation results of zero-angular-momentum reor-
ientations of the PhoneSat are presented and confirm the effectiveness of the proposed 
method.
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AAS 15-596

FIXED-TIME CONTROL DESIGN

FOR SPACECRAFT ATTITUDE STABILIZATION

Li Yuan,* Boyan Jiang,† Chuanjiang Li,‡ Guangfu Ma§ and Yanning Guo**

Fixed-time controller features an upper bound of settling time, which does not depend on 
initial states of control system. In view of that nearly all the existing fixed-time control 
methods are based on the terminal sliding mode, a new fixed-time control law is devel-
oped by using a special Lyapunov function with a power integrator form for the space-
craft attitude stabilization in the presence of external disturbance. The bounded conver-
gence time is given through a strictly theoretical deduction. Numerical simulations are 
performed to illustrate the effectiveness of the proposed fixed-time control scheme in the 
spacecraft attitude control system. 
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AAS 15-599

DECREASING THE FREQUENCY OF LUNAR RECONNAISSANCE 

ORBITER MOMENTUM UNLOADS USING SOLAR ARRAY 

POINTING AND ATTITUDE MANEUVERS TO CONTROL 

ANGULAR MOMENTUM

Russell DeHart* and Milton Phenneger†

The Lunar Reconnaissance Orbiter (LRO) is a three-axis stabilized spacecraft that uses 
hydrazine thrusters during reaction wheel assembly (RWA) momentum unloads. Some 
instrument activities and solar array configurations have been observed to be constructive 
or destructive to trends in spacecraft angular momentum. This analysis explores these as 
alternate methods to unload RWA angular momentum. On average, system body coordi-
nate system (BCS) Y angular momentum, HY, either increases by approximately 3.9 
Nms/day or decreases by approximately 1.1 Nms/day, depending on spacecraft configu-
ration. On average, HX and HZ each increase by 2.3 Nms/day. Systems engineers with the 
Space Science Mission Operations project at NASA Goddard Space Flight Center are de-
veloping the LRO Angular Momentum Simulation (LAMS), which predicts the RWA 
angular momentum over a user-defined period of time. For parked so-lar array configura-
tions, LAMS data suggest offsets of +2.4° and +5.0° to the inner gimbal would nullify 
growth in RWA HY for the (–90°, +45°) and (–90°, +15°) solar array (inner, outer) con-
figurations, respectively. Larger offsets are necessary when using the outer gimbal to 
control RWA HXZ. For the (–90°, +45°) and (–90°, +15°) configurations, offsets of +22° 
and +60°, respectively, were necessary. Operational constraints limit the application of 
the full offsets, though, especially for the (–90°, +45°) configuration. Removing overall 
angular momentum trends in the vicinity of attitude maneuvers allows the measurement 
of maneuver-induced changes in system angular momentum. This trending analysis iden-
tifies –90° CRaTER instrument calibration roll and ±45° LROC exospheric measurement 
pitch slews as candidates for angular momentum control. CRaTER roll maneuvers in-
creased system BCS HY by up to 2.8 Nms. The magnitude of changes in system in-plane 
angular momentum was limited to less than 1 Nms. Each ±45° LROC exosphere meas-
urement pitch slew changes the system BCS HY by approximately 0.5 Nms, while leav-
ing HXZ essentially unchanged. Once the LAMS has been fully verified, it can be used to 
explore notional scenarios, instead of relying on trending analysis which is limited to 
measuring the effects of activities that have actually been performed.    [View Full Paper]
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AAS 15-601

LYAPUNOV BASED ATTITUDE CONSTRAINED CONTROL

OF A SPACECRAFT

Monimoy Bujarbaruah* and Srikant Sukumar†

The article deals with the problem of imposing attitude constraints during trajectory 
tracking for a spacecraft. A Lyapunov function based approach is utilized to develop a 
novel nonlinear backstepping controller for implementation of the imposed attitude con-
straints, while guaranteeing reference attitude tracking. The result combines a static op-
timization and Lyapunov function based approach to ensure that initial conditions starting 
within the attitude constraint boundary stay within the same for all time. 
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AAS 15-605

ANALYSIS OF THE GAUSS-BINGHAM DISTRIBUTION FOR

ATTITUDE UNCERTAINTY PROPAGATION

Jacob E. Darling* and Kyle J. DeMars†

Attitude uncertainty quantification typically requires a small angle assumption, and thus 
an inherent small uncertainty assumption, to be made. This small angle assumption can 
be eliminated by employing the Bingham distribution to represent the attitude uncertainty 
in the attitude quaternion directly. Moreover, an extension to the Bingham distribution, 
termed the Gauss-Bingham distribution, can be used to represent correlated attitude qua-
ternion and angular velocity uncertainty to enable attitude uncertainty propagation. In or-
der to evaluate the potential accuracy gain using the Gauss-Bingham distribution for atti-
tude uncertainty quantification, the Gauss-Bingham distribution method for attitude un-
certainty propagation is compared to the propagation step of the multiplicative extended 
Kalman filter, which requires a small angle assumption to be made. The attitude uncer-
tainty quantified by each method is discretely sampled and mapped to a common attitude 
parameterization in order to make accurate comparisons between each method. 
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AAS 15-614

APPLICATION OF THE REGULARIZED PARTICLE FILTER FOR 

ATTITUDE DETERMINATION USING REAL MEASUREMENTS

OF CBERS-2 SATELLITE

William R. Silva,* Hélio K. Kuga† and Maria C. Zanardi‡

In this work, the attitude determination and the gyros drift estimation using the Regular-
ized Particle Filter (RPF) with Roughening for nonlinear systems will be described. The 
application uses the real measurement data for orbit and attitude of the CBERS-2 (China 
Brazil Earth Resources Satellite) that are compared with the simulated measurements, 
with low and high sampling rate, emulating the real conditions of CBERS-2 satellite. The 
simulated measurements were provided by the package PROPAT, a Satellite Attitude and 
Orbit Toolbox for Matlab. The method used for attitude estimation, Regularized Particle 
Filter (RPF), is a statistical, brute-force approach to estimation that often works well for 
problems that are difficult for the conventional Extended Kalman Filter (EKF). Neverthe-
less, in real time applications its estimation accuracy and efficiency are significantly af-
fected by number of particles which increases the computational overload. The Particle 
Filter kernel has some similarities with the Unscented Kalman Filter which transforms a
set of points (cloud) through known nonlinear equations and combines the results to es-
timate the mean and covariance of the state. However, in the Particle Filter the points 
(particles cloud) are chosen randomly, whereas in the Unscented Kalman Filter the points 
are carefully selected on the basis of a specific criterion. In this way, the number of points 
used in a Particle Filter generally needs to be much greater than the number of points 
(called sigma-points) in an Unscented Kalman Filter. The results show that one can reach 
accuracies in attitude determination within the prescribed requirements using the Regu-
larized Particle Filter, although at extra computational cost when compared to conven-
tional nonlinear filter approaches like EKF. 
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AAS 15-627

A MOTION PLANNING METHOD FOR SPACECRAFT ATTITUDE 

MANEUVERS USING SINGLE POLYNOMIALS

Albert Caubet* and James D. Biggs†

A motion planning technique for generating smooth attitude slew maneuvers is presented, 
which can generate suboptimal feasible trajectories with low computational cost in the 
presence of constraints. The attitude coordinates are shaped by time-dependent polyno-
mials, whose coefficients are determined by matching prescribed arbitrary boundary con-
ditions. Quaternions are used as the reference attitude parametrization for arbitrary ma-
neuvers, which require normalization of the four independently shaped coordinates. In 
the case of spin-to-spin maneuvers, a particular combination of Euler Angles are used. 
The torque profile is evaluated using inverse dynamics, which allows the feasibility of the 
maneuver given the actuator constraints to be checked. With this approach, a root-finding 
method is used to select the minimum time for a certain path. By increasing the degree of 
the polynomial free coefficients are introduced, thus pointing constraints can be accom-
modated and time can be optimized amongst this class of motion. This motion planning 
method is applied to a flexible spacecraft model, demonstrating its effectiveness at reduc-
ing spillover vibrations. 
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AAS 15-628

A MICRO-SLEW CONCEPT FOR PRECISION POINTING

OF THE KEPLER SPACECRAFT

Mark Karpenko,* I. Michael Ross,† Eric T. Stoneking,‡

Kenneth L. Lebsock§ and Neil Dennehy**

In light of the failure of two of four reaction wheels, the pointing precision of the Kepler 
spacecraft became so severely degraded that its original mission of hunting planets near the 
Cygnus constellation could not be continued. Since the scientific instrument remained fully 
functional, a new mission for Kepler called the K2 mission was proposed. In the K2 mis-
sion, Kepler uses a hybrid control architecture for pointing in the ecliptic plane. With the 
hybrid control architecture, the achievable pointing precision depends on the minimum im-
pulse bit of the spacecraft reaction control system. This paper describes an alternative con-
trol strategy called the micro-slew which can be executed with reaction wheels only and 
used to reduce the control deadband associated with a hybrid control architecture. The new 
idea may therefore improve the pointing precision of the Kepler spacecraft beyond the K2 
mission. The micro-slew concept is based on the observation that the solar radiation pres-
sure acting on Kepler as a disturbance torque can be repurposed as a control torque in order 
to eliminate reliance on thrusters for three axis control. This is done by designing a three-
axis attitude maneuver over small angles (less than 10−4 rad) using concepts from optimal 
control. 
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AAS 15-643

HANGING BY A STRING: ATTITUDE CONTROL METHODS AND 

REACTION WHEEL SIZING ANALYSIS FOR EYASSAT3 *

Grant M. Thomas,† Daniel R. Jones,‡

Jean-Remy Rizoud§ and David J. Richie**

This paper explores using an EyasSAT3 CubeSAT as a satellite engineering design and 
attitude determination and control demonstration tool for Air Force Academy undergrad-
uates. An excellent tool for training future space experts, EyasSAT3 contains many stand-
ard satellite subsystems and is equipped with twelve photo-resistors, a three-axis magne-
tometer, and a three-axis rate sensor for attitude determination along with three single-
axis torque rods and three reaction wheels for actuation. Interestingly, limitations in the 
contractor provided hardware have restricted progress thus far, as described in previous 
work. This effort, therefore, seeks to remedy this condition. More specifically, during re-
duced order performance testing in late 2014, it became evident the reaction wheel mo-
tors have poor control authority, which limits classroom utility. These challenges, then, 
inspired this effort, which seeks to upgrade the onboard reaction wheel rotor/motor com-
ponents and improve performance as compared to the existing components. That said, in 
order to improve satellite tracking performance, this paper assesses three alternative ap-
proaches: improving reaction wheel motor performance, decreasing the hamster ball 
moment of inertia, and improving motor drive software performance. By increasing the 
EyasSAT3 tracking performance, the satellite will more effectively demonstrate the nu-
ances of differing control algorithms to students integrating them in the classroom. 
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AAS 15-646

ANALYSIS OF ATTITUDE DYNAMICS OF SPINNING SATELLITES 

IN AN ELLIPTICAL ORBIT

Dayung Koh* and Henryk Flashner†

The attitude dynamics of a spinning satellite in an elliptical orbit subjected on gravity 
gradient torque is studied. Previous studies mostly assumed small motion dynamics. Con-
sequently, a reliable global behavior of the system was not achieved. In this paper, a new 
approach that combines analytical and numerical techniques is used to study the global 
behavior of the full nonlinear system. Families of periodic solutions and rich dynamic 
phenomena are analyzed. Stability properties and bifurcations of periodic solutions as
function of satellite’s spin rate and inertia properties are presented. Fast Fourier analysis 

is utilized to characterize the quasi-periodic behaviors. 
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AAS 15-656

GENERALIZED ATTITUDE MODEL

FOR MOMENTUM-BIASED SOLAR SAIL SPACECRAFT

Yuichi Tsuda,* Go Ono,† Kosuke Akatsuka,‡ Takanao Saiki,§ Yuya Mimasu,**

Naoko Ogawa†† and Fuyuto Terui‡‡

This paper describes a method of modeling general attitude dynamics of non-spinning 
momentum-biased spacecraft under strong influence of solar radiation pressure (SRP). 
This model, called “Generalized Sail Dynamics Model”, can be applied to realistic sails 

with non-flat surfaces that have non-uniform optical properties. A coarse Sun-pointing, 
momentum-biased sail spacecraft is especially focused, for which an approximate solu-
tion for the equations of motion is analytically derived. Stability and some other funda-
mental characteristics of momentum-biased sail spacecraft dynamics, as well as theoreti-
cal connections with the past representative sail dynamical models are discussed in detail. 
Furthermore, the unique behaviors predicted by the model are verified using flight data of 
the Japanese interplanetary probe Hayabusa2. 
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AAS 15-685

VELOCITY-FREE ATTITUDE STABILIZATION

WITH MEASUREMENT ERRORS

Sungpil Yang,* Frédéric Mazenc† and Maruthi R. Akella‡

This paper addresses the rigid body attitude stabilization problem with the globally 
nonsingular quaternion representation. Specifically, a passivity-based output feedback 
controller is considered in the presence of measurement errors. In the absence of uncer-
tainties, it is well known that the body orientation can be stabilized via dynamic exten-
sions in the form of a first-order stable filter from the passivity framework. Once the filter 
is driven by a noise-corrupted quaternion and the controller employs both the imperfect 
attitude measurements and the output of the filter, the stability properties of the closed-
loop system are weakened. Also, the robustness properties cannot be readily established 
through the Lyapunov analysis with a typical Lyapunov-like function used for this prob-
lem since the time derivative of the function is only negative semi-definite. However, the 
strictification technique allows us to build a partially strict Lyapunov-like function and 
eventually to establish certain conditions that guarantee the boundedness of trajectories. 
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AAS 15-686

UNIFIED APPROACH TO VARIABLE-STRUCTURE TRACKING 

CONTROL IN VARIOUS ATTITUDE PARAMETERIZATIONS

Sergei Tanygin*

The variable-structure control for attitude tracking is examined in general terms. The earlier 
developments are placed within the common framework that provides new insights into the 
effects that different attitude parameterizations have on the closed-loop dynamics. In par-
ticular, two alternative sliding mode surfaces are compared: one resulting in the kinemati-
cally optimal performance index and the other leading to the linear error dynamics. In pre-
viously employed parameterizations, these sliding surfaces differed from each other result-
ing in controls could attain either the kinematically optimal performance or the linear error 
dynamics but not both. The analysis carried out in this paper demonstrates how to achieve 
both objectives using the control written in terms of the rotation vector. The analysis also 
shows how a similar performance can be realized using the proxy-rotation vector defined 
from specially tuned generalized Rodrigues parameters. 
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AAS 15-687

UNIFIED APPROACH

TO ADAPTIVE VARIABLE-STRUCTURE CONTROL

FOR ATTITUDE TRACKING IN VARIOUS PARAMETERIZATIONS

Sergei Tanygin*

The adaptive variable-structure control for attitude tracking is examined in general terms. 
The earlier formulation developed in terms of quaternion components is reexamined in a
more general form suitable for other attitude parameterizations. The adaptive control laws 
are modified to address the unwinding phenomenon and to guarantee that the closed-loop 
error dynamics evolve along the shortest arcs. It is shown that different parameterizations 
provide additional degrees of freedom for improving parameter adaptation and closed-
loop performance. 
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AAS 15-704

NONLINEAR TRACKING ATTITUDE CONTROL OF SPACECRAFT 

ON TIME DEPENDENT TRAJECTORIES

Ozan Tekinalp,* Mohammad M. Gomroki† and Omer Atas‡

The spacecraft attitude control is carried out using the to-go quaternion. A derivative of 
the to-go quaternion is derived where the desired attitude is a time dependent function. 
Based on this new attitude formulation, a proper state dependent coefficient matrix ex-
pression is obtained. Then the nonlinear tracking attitude control is realized using the 
state dependent Riccati equation method. The simulation results are given and discussed. 
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AAS 15-714

FREQUENCY RESPONSE BASED REPETITIVE CONTROL 

DESIGN FOR LINEAR SYSTEMS WITH PERIODIC COEFFICIENTS

Henry Yau* and Richard W. Longman†

Repetitive Control (RC) creates control systems that aim to converge to zero tracking er-
ror following a periodic command, or aim to completely cancel the effects of a periodic 
disturbance, e.g. jitter at a fine pointing sensor location caused by imbalance in reaction 
wheels or CMG’s. In some applications, a periodic command can need a nonlinear mod-
el. When linearized about the desired output, the equations become linear but with peri-
odic coefficients. This paper develops an RC law for such systems. A previous very ef-
fective RC law for constant coefficient systems uses the inverse of the steady state fre-
quency response as a compensator, and results in very fast convergence, often settling 
within one period plus a fraction. This paper develops the analogous RC law for periodic 
coefficient models. A mathematical representation of the frequency response inverse for 
periodic coefficient systems is developed. The law is implemented in the frequency do-
main, monitoring the frequency components of the error using moving windows of error, 
and of previous control inputs, computing their frequency contents. Then the change in 
frequency content needed to create zero tracking error, perhaps with a gain in front, is 
used to compute the change in the command for the current time step. The algorithm can 
also handle multiple-input multiple-output systems. An if-and-only-if condition is derived 
for asymptotic convergence to zero tracking error. 
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AAS 15-716

ATTITUDE DYNAMICS MODELING OF SPINNING SOLAR SAIL 

UNDER OPTICAL PROPERTY CONTROL

Takuro Furumoto,* Ryu Funase† and Tomohiro Yamaguchi‡

Recently, reflectivity control device (RCD) is proposed as a fuel-free attitude control sys-
tem for spinning sail spacecraft. In this research, an attitude control model for spinning 
sail spacecraft with reflectivity control capability was derived as an extension of General-
ized spinning Sail Model (GSSM). It was found that attitude control capability is deter-
mined by three parameters, which depend only on geometric property and optical per-
formance of RCD. The proposed model suggests that the attitude, or the spin axis direc-
tion of the sail, converges toward an equilibrium point, which can be controlled within 
some range determined by the three parameters by switching RCD. Finally, the fidelity of 
the model was evaluated using actual flight data of IKAROS during RCD operation. 
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AAS 15-762

TIME-OPTIMAL REORIENTATION VIA INVERSE DYNAMICS:

A QUATERNION AND PARTICLE SWARM FORMULATION

Ko Basu* and Robert G. Melton†

An inverse-dynamics method is used in conjunction with a particle swarm algorithm to 
find near-minimum time reorientation maneuvers in the presence of path constraints. The 
method employs a quaternion formulation of the kinematics, using B-splines to represent 
the quaternions. The inverse particle swarm optimization provides a method to determine 
an initial solution for an optimal control problem that may use a gradient-based method. 
The inverse method provides certain advantages in this problem over a direct method 
such as enforcement of boundary conditions and the increase of computational efficiency 
by avoiding the use of numerical integrators. 
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AAS 15-772

USING QUADRATICALLY CONSTRAINED QUADRATIC

PROGRAMMING TO DESIGN REPETITIVE CONTROLLERS: 

APPLICATION TO NON-MINIMUM PHASE SYSTEMS

Pitcha Prasitmeeboon* and Richard W. Longman†

Repetitive Control (RC) aims for zero tracking error in the presence of a periodic disturb-
ance. Non-minimum phase systems present a difficult design challenge to the sister field 
of Iterative Learning Control. This paper investigates to what extent the same challenges 
appear in RC. One challenge is that RC easily handles zeros outside the unit circle in the 
discrete time z-plane introduced by discretization, but the non-minimum phase zeros 
mapped from continuous time are normally much closer to the unit circle. A second chal-
lenge is the result of the small magnitude frequency response at zero frequency produced 
by the zero. A min-max cost function over the learning rate is presented along with the 
approach needed to easily compute the optimal solution as a Quadratically Constrained 
Linear Programming problem. This is shown to be an RC design approach that directly 
addresses the challenges of non-minimum phase systems. And it has the advantage that it 
can be designed based on frequency response data directly, without producing a pole-zero 
system model. But it is shown that this is not the preferred design approach for minimum 
phase systems. It is demonstrated that the most common approach to RC design, devel-
oped by Tomizuka, does not work on non-minimum phase systems. The design based on 
optimizing the learning rate that the authors advocate for minimum phase systems is seen 
to give good performance at most frequencies, but require a large number of gains to 
learn well at DC. One might still want to accept this tradeoff. A new design approach 
based on Taylor series expansion of the discrete time transfer function is given and 
shown to be competitive to the min-max approach under appropriate circumstance. The 
conclusion is that we now have effective methods to design repetitive control of non-
minimum phase systems. 
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AAS 15-779

SPACECRAFT ATTITUDE DETERMINATION SIMULATION TO 

IMPROVE THE EFFICIENCY OF A STAR TRACKER

Nathan Houtz* and Carolin Frueh†

Knowing a spacecraft’s orientation is crucial for many of its vital functions. Attitude is 

often determined using a star tracker. Star tracker attitude determination must be fast and 
efficient given the limited on board computing resources. To determine its attitude, a star 
tracker takes an image of its environment, locates the stars in that image, recognizes a 
pattern among those stars, matches it with patterns in a catalog, and estimates the rotation 
matrix that relates the spacecraft to the inertial frame. Locating the stars exactly is crucial 
for the attitude estimation accuracy, however computational efficiency is demanded at the 
same time. Searching through catalogs to match patterns is a computationally expensive 
step in this process, too. This work aims to compare the performance of a simple and a 
high fidelity star location method and provides a potentially more efficient solution to the 
catalog generation and matching. A new catalog generation method is presented. The new 
catalog requires over five times as many triangles as existing catalogs and three parame-
ters instead of one, but only 39% as many stars as a reference catalog for a 25° field of 
view star tracker. Every search performed in the new catalog is guaranteed to find a 
match. The size of the catalog decreases with larger fields of view, so memory require-
ments for large field of view start trackers are smaller. The more efficient matching re-
duces the computational time. Our simulation results are validated with an experimental 
setup. 
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AAS 15-781

ERGODICITY OF THE EULER-POINSOT PROBLEM

Andrew J. Sinclair* and John E. Hurtado†

This paper illustrates the possibility of ergodic motion in the Euler-Poinsot problem. In 
the traditional polhode/herpolhode interpretation, ergodicity corresponds to a specific lo-
cation on the polhode never repeating points of contact on the herpolhode. For axisym-
metric bodies, this condition corresponds to the commensurability of the radii of the cir-
cular polhode and herpolhode. For general asymmetric bodies, the polhode/herpolhode 
interpretation provides less insight into the nature of the motion. However, recently de-
veloped analytic solutions and motion constants provide more direct insight, with er-
godicity being related to the commensurability of the periods of the angular-momentum 
vector and Poinsot’s chronometric vector.
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AAS 15-503

POWER STARTM: A NEW APPROACH TO SPACE SOLAR POWER

David C. Hyland* and Haithem A. Altwaijry†

Space Solar Power refers to the concept of a space system that collects solar power via 
photovoltaics and transmits it to ground collection stations using visible or microwave 
radiation. Previous system designs developed over the past several decades entail gigantic 
structures with many moving parts and require on-orbit infrastructure and in-space con-
struction. The concept advanced here combines new solar cell / microwave printing tech-
nology with well-established inflatable satellite technology to form a design that has no 
moving parts, requires no in-space construction and can be packaged in many existing 
launch vehicle payload fairings. 
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AAS 15-529

A MULTILAYER PERCEPTRON HAZARD DETECTOR

FOR VISION-BASED AUTONOMOUS PLANETARY LANDING

Paolo Lunghi,* Marco Ciarambino† and Michèle Lavagna‡

A hazard detection and target selection algorithm, based on Artificial Neural Networks, is 
presented. From a single frame acquired by a VIS camera, the system computes a hazard 
map, exploited to select the best target, in terms of safety, guidance constraints, and sci-
entific interest. ANNs generalization properties allow the system to correctly operate also 
in conditions not explicitly considered during calibration. The net architecture design, 
training, verification and results are critically presented. Performances are assessed in 
terms of recognition accuracy and selected target safety. Results for different scenarios 
are discussed to highlight the effectiveness of the system. 
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AAS 15-530

MULTIBODY DYNAMICS DRIVING GNC AND SYSTEM DESIGN IN 

TETHERED NETS FOR ACTIVE DEBRIS REMOVAL

Riccardo Benvenuto,* Samuele Salvi† and Michèle R. Lavagna‡

Debris removal in Earth orbits is an urgent issue to be faced for space exploitation dura-
bility. Among different techniques, tethered-nets present appealing benefits and some 
open points to fix. Former and latter are discussed in the paper, supported by the exploita-
tion of a multibody dynamics tool. Critical phases as impact and wrapping are analysed 
to address the tethered-stack controllability: it is shown how the role of contact modelling 
is fundamental to describe the coupled dynamics: it is demonstrated how friction between 
the net and a tumbling target allows reducing its angular motion, stabilizing the system 
and allowing safer towing operations. The critical modes prevention by means of a 
closed-loop control synthesis is also shown and the connection between flexible dynam-
ics and capture system design is highlighted, giving engineering answers to most chal-
lenging open points to lead to a ready to flight solution. Finally, an overview is given on 
the microgravity test campaign that has been performed to validate the multibody dynam-
ics models. 
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AAS 15-547

FEEDBACK TRACKING CONTROL BASED ON

A TRAJECTORY-SPECIFIC FINITE-TIME CAUSAL INVERSE

Nermin Caber,* Anil Chinnan,† Minh Q. Phan,‡

Richard W. Longman§ and Joachim Horn**

Classical feedback control is typically designed for infinite time with a focus on steady-
state performance. However, Iterative Learning Control (ILC) operates in finite time 
where the same tracking operation is repeated over and over again. This paper develops a 
finite-time formulation of feedback control based on a trajectory-specific causal inverse 
that is consistent with the finite-time framework of ILC so that both can later be opti-
mized simultaneously. The performance of the finite-time feedback controller is illustrat-
ed on a highly flexible lightly damped dynamical system for tracking a very short trajec-
tory. Disturbance and measurement error are also considered. 
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AAS 15-548

THRUST VECTOR CONTROL OF UPPER STAGE

WITH UNCERTAINTY OF THE CENTROID

Zhaohui Wang,* Ming Xu,† Lei Jin† and Xiucong Sun*

During the orbit transfer of upper stage, the command direction of thrust vector deter-
mined by the guidance system should ideally pass through the centroid when the thruster 
is working. However, it is hard to realize in actual operation. Moreover, the low identifi-
cation accuracy of position that leads to the uncertainty of centroid position makes the 
situation worse. This paper discusses the issue of the thrust vector control (TVC) problem 
of the upper stage to make sure the thrust vector of the GT passes through the centroid 
and aligns with the command direction under the uncertainty of centroid. First, a thrust 
vector control system consisting of the attitude control for the upper stage and the gimbal 
control of the GT ensures the thrust vector passes through the upper stage’s centroid is 
proposed. Second, a modification procedure is designed to draw the thrust vector aligns 
with the command direction. The control and modification system can draw the thrust 
vector tracks the position of the centroid and aligns with the command direction. The va-
lidity of the algorithm proposed in this paper is verified by numerical simulations. 
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AAS 15-554

MULTI-CONSTRAINT HANDLING

AND A MIXED INTEGER PREDICTIVE CONTROLLER

FOR SPACE ROBOTS WITH OBSTACLE AVOIDANCE

Jianjun Luo,* Lijun Zong,† Baichun Gong‡ and Jianping Yuan§

For the issue that obstacles need to be avoided in many space robots tasks, this paper de-
velops a mixed integer predictive controller for space robots avoiding obstacles when 
performing tasks. Firstly, an improved obstacle avoidance constraint is formulated based 
on propositional logic. Then, in the frame of Model Predictive Control (MPC) method,
tracking errors and fuel consumptions of all manipulator joints are involved in the cost 
function, and three types of constraints, joint input and output limits, as well as the devel-
oped obstacle avoidance constraint, compose the inequality constraints. Furthermore, the 
constraint priority is established based on propositional logic, guaranteeing the problem 
could be solved under the satisfaction of maximum number of the constraints. Simulation 
results illustrate the improved obstacle avoidance constraint based on propositional logic 
could be better for particle following the reference trajectory than the traditional one. And 
the mixed integer predictive controller effectively ensures avoiding obstacles during 
space robots performing the tasks. 
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AAS 15-556

A NOVEL UNIFIED MODELING METHOD AND ADAPTIVE 

SLIDING MODE CONTROL BASED ON DIFFERENTIAL

INCLUSION FOR HYPERSONIC RE-ENTRY VEHICLE

Jianjun Luo,* Caisheng Wei,† Baichun Gong‡ and Jianping Yuan§

A novel unified modeling approach is proposed to model the multi-model control system 
for hypersonic re-entry vehicle in wide flight envelope based on differential inclusion. 
Then based on the unified control model, an adaptive estimator is deigned to estimate the 
uncertain and un-modeled dynamics parameters. The real-time compensation for the sys-
tematic parameters with weight based on coefficient of variation is implemented to pre-
vent the aged model. Afterwards, a modified adaptive nonsingular terminal sliding mode 
controller by introducing integral sliding mode surface is devised to realize the high pre-
cise robust control for hypersonic re-entry vehicle based on the unified control model 
with parameter dynamic match. Finally, the numerical simulation results verify the effi-
ciency of the modeling approach and controller. 
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AAS 15-559

SUPERSPACE AND SUBSPACE INTERSECTION 

IDENTIFICATION OF BILINEAR MODELS

WITH DISCRETE-LEVEL INPUTS

Minh Q. Phan,* Francesco Vicario,†

Richard W. Longman‡ and Raimondo Betti§

When excited by an input consisting of a number of discrete levels, a bilinear system be-
comes a linear time-varying system whose dynamics switches from one linear subsystem to 
another depending on the input level. This paper describes an identification method that 
uses the concept of a superstate of a switched linear system as a superstate of the bilinear 
system. In a superspace method, these superstates are used directly to identify a bilinear 
system model. In a subspace intersection method, two or more superstate representations 
are intersected to find a reduced dimension subspace prior to identification of a bilinear 
model. 

[View Full Paper] 

                                                                
* Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, U.S.A. 
† Department of Mechanical Engineering, Columbia University, New York, New York; now with Philips Research 
North America, 345 Scarborough Road, Briarcliff Manor, New York 10510, U.S.A. 
‡ Department of Mechanical Engineering, Columbia University, 500 W. 120th St., New York, New York 10027, U.S.A. 
§ Department of Civil Engineering and Engineering Mechanics, Columbia University, 500 W. 120th St., New York, 
New York 10027, U.S.A. 

146

http://www.univelt.com/book=5421


AAS 15-562

MASS, STIFFNESS, AND DAMPING MATRICES FROM AN 

IDENTIFIED STATE-SPACE MODEL BY SYLVESTER EQUATIONS

Dong-Huei Tseng,* Minh Q. Phan† and Richard W. Longman‡

This paper presents a method to identify the mass, stiffness, and damping matrices of a 
dynamical system from an identified state-space model. The solution is decoupled in the 
sense that the mass, stiffness, and damping matrices are solved from three independent 
Sylvester equations. Position, velocity, acceleration measurements or any combination 
can be used. The proposed solution is perhaps the simplest yet, and represents a major 
improvement over a Kronecker product based solution that is computationally prohibitive 
for large dimensional problems. The Observer/Kalman filter identification method 
(OKID) is used as a pre-processing step for optimal identification of a state-space model 
prior to the recovery of the mass, stiffness, and damping matrices. 
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AAS 15-593

A TWO-TIERED APPROACH TO SPACECRAFT POSITIONING

FROM SIGNIFICANTLY BIASED GRAVITY GRADIENT 

MEASUREMENTS

Xiucong Sun,* Pei Chen,† Christophe Macabiau‡ and Chao Han§

Gravity gradients which can be measured by a spaceborne gradiometer is proposed to 
provide positioning capabilities for spacecraft in GPS-denied environments. A two-tiered 
approach is developed to cope with significantly biased measurements. The navigation 
process consists of a positioning stage and a bias calibration stage. Two different posi-
tioning methods are summarized and used in the positioning stage, and a unified covari-
ance analysis is introduced. During the bias calibration stage, the discrete positions are 
smoothed using orbital dynamics, and biases are estimated from the measurement residu-
als. The two-tiered approach is tested with GOCE flight data, and steady position errors 
on the order of 1 kilometer are achieved for both the two methods. 
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AAS 15-595

FAST AND EFFICIENT SAIL-ASSISTED DEORBITING STRATEGY

FOR LEO SATELLITES IN ORBITS HIGHER THAN 700 KM

Sergey Trofimov* and Mikhail Ovchinnikov†

A novel efficient deorbiting strategy for LEO satellites is proposed. The attitude motion 
of a spacecraft with a flat solar sail resembling the Likins-Pringle hyperbolic relative 
equilibrium can be stabilized by a damping control torque an order of magnitude smaller 
than the three environmental torques. As a result, there appears a secular decrease of the 
orbit size induced by solar radiation pressure. For a series of 900 km sun-synchronous 
orbits with different mean local times of ascending node, numerical simulation of cou-
pled orbit-attitude dynamics reveals a dramatic reduction in deorbit time as compared 
with the aerostabilized sail deorbiting mode—between 30% at high solar activity and 
300% at low solar activity. The smallness of the damping torque required for stabilizing a 
quasiperiodic attitude motion makes it possible to implement that control even using min-
iaturized magnetorquers. Sensitivity analysis is conducted with respect to both initial 
conditions and sailcraft parameters. 
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AAS 15-620

AGILITY ENVELOPES FOR REACTION WHEEL SPACECRAFT

Mark Karpenko* and Jeffery T. King†

Spacecraft agility is limited by the maximum torque that reaction wheels can provide. 
Therefore, a reaction wheel array is typically configured to maximize the inscribed 
sphere of the reaction wheel torque envelope. However, maximizing the inscribed torque 
sphere does not, in general, maximize agility. Thus, the industry standard approach can 
severely underestimate the true capability of an attitude control system. This paper pre-
sents the concept of the agility envelope for reaction wheel arrays as a means to identify 
“hidden agility” that can be exploited to maximize the slew performance of a convention-

al attitude control system. In a typical example, this hidden agility can be used to reduce 
slew times without the need for larger, more costly hardware or new control algorithms. 
Since the agility envelope for a reaction wheel attitude control system is an n-
dimensional hypercube projected into three-dimensional space, simple expressions exist 
for determining the maximal agility envelope. These expressions are developed and used 
to solve for the limits on angular acceleration and rate for maneuver design and imple-
mentation as well as for finding the reaction wheel skew angles that maximize agility for 
a given spacecraft configuration. 
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AAS 15-660

SINGLE-POINT POSITION ESTIMATION IN INTERPLANETARY 

TRAJECTORIES USING STAR TRACKERS

Daniele Mortari* and Dylan Conway†

This study provides a closed-form single-point position estimation technique for inter-
planetary missions using visible planets observed by star trackers. The least-squares solu-
tion is obtained by minimizing the sum of the expected object-space squared distance er-
rors. A weighted least-squares solution is provided by an iterative procedure. The weights 
are evaluated using the distances to the planets estimated by the least-squares solution. It 
is shown that the weighted approach only requires one iteration to converge and results in 
significant accuracy gains. The light time correction is taken into account while the stellar 
aberration cannot be implemented in single-point estimation as it requires knowledge of 
the velocity. The proposed method is numerically tested in several statistical tests and for 
one-year interplanetary trajectory example with fixed attitude. The apparent planet mag-
nitudes, the angle between observed visible planets (constrained by the sensor FOV), and 
the Sun-exclusion angle are computed throughout the trajectory. This study proves that, 
using a single star tracker pointing to visible planets, it is possible to provide reliable and 
accurate single-point position estimation in interplanetary missions. 
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AAS 15-692

STATION-KEEPING CONTROL FOR

COLLINEAR LIBRATION POINT ORBITS USING NMPC

Chuanjiang Li,* Gang Liu,† Jing Huang,‡ Gao Tang§ and Yanning Guo**

A simple station-keeping control strategy for orbits around the colinear libration points in 
the Earth-Moon system is developed. The motion equations modeled in inertial coordi-
nates with no assumptions is directly employed in the controller design. The proposed 
control strategy, which is computed using the discrete nonlinear model predictive control 
theory, is capable of meeting thrust constraints as well as reducing energy consumption. 
The performance of the proposed strategy has been evaluated by a series of numerical 
simulations for quasi-periodic orbits derived by a multiple-shooting method in the full 
ephemeris model. 
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AAS 15-695

OPTIMAL LOW THRUST ORBIT CORRECTION

IN CURVILINEAR COORDINATES

Juan L. Gonzalo* and Claudio Bombardelli†

The minimum-time, constant-thrust transfer between two close, coplanar, quasi-circular 
orbits is studied using a novel non-linear formulation of relative motion in curvilinear 
coordinates. The Optimal Control Problem in the thrust orientation angle is treated from a 
quantitative and qualitative point of view, using the direct and indirect methods respec-
tively. The former yields numerical solutions for a wide range of thrust parameters, while 
a better understanding of the physics is achieved seeking for an approximate solution of 
the latter. Fundamental changes in the structure of the solution with the thrust parameter 
are identified. 
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AAS 15-712

RELATIVE OPTICAL NAVIGATION AROUND SMALL BODIES

VIA EXTREME LEARNING MACHINES

Roberto Furfaro* and Andrew M. Law†

To perform close proximity operations under a low-gravity environment, relative and ab-
solute position are vital information to the spacecraft maneuver. Hence navigation is in-
separably integrated in space travel. This paper presents Extreme Learning Machine 
(ELM) as an optical navigation method around small celestial bodies. ELM is a Single 
Layer feed-Forward Network (SLFN), a brand of neural network (NN). The algorithm 
based on the predicate that input weights and biases can be randomly assigned and does 
not require back-propagation. The learned model composes of the output weights which 
can be used to develop into a hypotheses. The proposed method is used to estimate the 
position of the spacecraft from optical images obtained through a navigation camera. The 
results show this approach is promising and potentially suitable for on-board navigation. 
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AAS 15-715

MODIFIED POLYNOMIAL GUIDANCE LAW FOR LUNAR LANDING

Donghun Lee,* Jae-Wook Kwon,* Hyochoong Bang† and Bang-Yeop Kim‡

In this paper, a modified polynomial guidance law is studied for a powered terminal de-
scent of a lunar lander. Also, Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) and 
modified Apollo guidance laws including off-line trajectory optimization approach are 
analyzed. Because each guidance law has advantages and drawbacks, modified polyno-
mial guidance law is proposed. The modified guidance law is derived quasi-analytically 
after taking advantages of previous real-time guidance laws for onboard application. In 
the numerical simulation section, performance will be compared from several points of 
view such as avoiding surface collision and fuel consumption. 
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AAS 15-720

CUBESAT PROXIMITY OPERATIONS DEMONSTRATION

(CPOD) MISSION: END-TO-END INTEGRATION

AND MISSION SIMULATION TESTING

Christopher W. T. Roscoe,* Jason J. Westphal,*

Christopher T. Shelton,† and John A. Bowen‡

The CubeSat Proximity Operations Demonstration (CPOD) mission will demonstrate 
rendezvous, proximity operations, and docking with a pair of 3U CubeSats using minia-
turized components and sensors. The goal of this mission is to develop small spacecraft 
technologies with game-changing potential and validate these technologies via space-
flight. Several new systems have been designed specifically for this program, including: 
next generation star trackers, next generation miniature reaction wheels, miniature cold-
gas multi-thruster propulsion modules, a new relative navigation sensor suite, power 
management and distribution electronics based on flight proven designs, and intelligent 
software solutions hosted on multiple low-power Linux ARM processors. This paper pre-
sents a brief overview of the CPOD spacecraft and the mission Concept of Operations 
(ConOps) and detailed description of the recent end-to-end integration and mission simu-
lation testing campaign. The test campaign demonstrates the readiness of the integrated 
system in support of the flight mission. 
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AAS 15-722

OPTIMIZED FINITE-TIME FEEDBACK

AND ITERATIVE LEARNING CONTROL DESIGN

Anil Chinnan,* Minh Q. Phan† and Richard W. Longman‡

Simultaneous design of feedback and learning controllers is highly desirable for tracking 
trajectories that are short relative to the settling time of the system. This paper formulates 
a method to design both the feedback controller and learning controller by minimizing a 
quadratic cost function. The cost function includes terms that weigh the overall tracking 
error, feedback tracking error, magnitude of the feedback gains, and magnitude of the up-
date to the learning signal. In order to avoid non-linearity in the optimization, caused by 
working with the feedback gains directly, the feedback controller is designed through an 
intermediate matrix. The matrix Q can be interpreted as a causal inverse matrix for a spe-
cific or a family of finite-time trajectories and/or disturbances. While updating the feed-
back gains and learning signals from repetition to repetition, the Q matrix can be held 
static as initially designed or allowed to be adaptive. The combined feedback and learn-
ing design is illustrated on an extremely lightly damped, flexible system, where the dura-
tion of the desired trajectory to be tracked is approximately one-twentieth of the settling 
time of the system. 
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AAS 15-732

DIRECT POSITIONING AND AUTONOMOUS NAVIGATION

ALGORITHM BASED ON DUAL CONE-SCANNING HORIZON 

SENSOR/STAR SENSOR

Weihua Ma,* Jinwen Tan,† Malcolm Macdonald,‡

Baichun Gong§ and Jianjun Luo**

One method using the pure attitude sensors, Infrared Scanning Horizon Sensors (ISHS) 
and Star Sensor (SS), to determine the absolute position in inertial frame is developed. 
With the absolute position from the ISHS/SS, the Autonomous Integrated Navigation 
System (AINS) filter could be simplified. Based on the common nadir vectors from ISHS 
and absolute attitude from SS, a new direct positioning algorithm for ISHS/SS is con-
structed. The positioning error model is derived, too. Different the common method using 
the nadir vector/angle of ISHS to construct the observation, the inertial position from 
ISHS/SS is chosen as the observation of the AINS filter to estimate the absolute position 
and velocity. The Jacobin matrix of observation equation could be simplified greatly be-
cause the observation would not include the complex trigonometric function caused by 
the nadir vector/angle of ISHS. Simulation with the data from STK validates the correc-
tion of the direct positioning algorithm of ISHS/SS and the corresponding error model. 
The new AINS filter is tested to be convergence. The AINS position and velocity preci-
sion is about 500m (3σ) and 0.5m/s (3σ) if the measurement precision of ISHS and SS are 

0.1º (3σ) and 0.005º (3σ), respectively.
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AAS 15-736 

AUTONOMOUS OBSERVATION PLANNING

WITH FLASH LIDAR AROUND SMALL BODIES

Ann Dietrich* and Jay W. McMahon†

A flash LIDAR instrument, which returns a three-dimensional image of its subject, is in-
vestigated here for spacecraft autonomous navigation. Previous work found this instru-
ment can provide high accuracy for navigation; however processing power was large. 
This study investigates the navigation capabilities of flash LIDAR and techniques to re-
duce processing power. Image characteristics such as edge detection or the area of an ob-
ject within the image are quick to compute and can aid in determining an initial estimate 
of the spacecraft to initialize the filter. Once the filter is running, observation planning 
algorithms developed here maximize the information content of a subset of image pixels 
through the Fisher Information Matrix, and reduce processing power while still providing 
an accurate state estimate. The combination of these methods establishes a framework in 
which a spacecraft could autonomously determine its position from minimal state-
knowledge to sub-meter position accuracy using flash LIDAR measurements. 

[View Full Paper] 

                                                                
* Graduate Research Assistant, Department of Aerospace Engineering Sciences, University of Colorado - Boulder, 431 
UCB, Boulder, Colorado 80309, U.S.A. 
† Assistant Research Professor, Department of Aerospace Engineering Sciences, University of Colorado - Boulder, 431 
UCB, Boulder, Colorado 80309, U.S.A. 

159

http://www.univelt.com/book=5434


AAS 15-737

LAUNCH RESULTS OF GUIDANCE & CONTROL SYSTEM

OF EPSILON ROCKET

Hirohito Ohtsuka,* Yasuhiro Morita,† Kensaku Tanaka,*

Takanao Saiki,† Takayuki Yamamoto,† Hiroyuki Yamaguchi,†

Yasunobu Segawa* and Hitomi Gotoh*

The first Epsilon rocket was launched successfully with a small payload 'HISAKI' on 
September 14th, 2013 in Japan. Epsilon has a new absorber structure in Payload Attach 
Fitting to reduce the vibration condition for payload. We designed the robust control log-
ic to satisfy the compatibility of robust stability and response against various disturb-
ances. The 3rd Stage under spinning has a Rhumb-line Control function which reduces 
the pointing error at separation and ignition of solid motor. We could insert the payload 
into the orbit precisely by ‘LVIC’ guidance, suitable for low thrust propulsion in Post 

Boost Stage. We will present the flight results of the Guidance & Control (G&C) system 
and dynamics of Epsilon rocket. 
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AAS 15-744

IMAGE PROCESSING OF EARTH AND MOON IMAGES

FOR OPTICAL NAVIGATION SYSTEMS

Stoian Borissov* and Daniele Mortari†

This paper presents a summary of methods for processing real and synthetic images of 
the Moon and Earth for the purposes of Optical Navigation of spacecraft. They were de-
veloped in order to comply with autonomous navigation capabilities requirements for 
NASA’s Orion missions, however their application may be applied to a broad range of 
optical navigation problems. Using a pinhole camera taking images of a celestial body the 
image processing provides estimate of the observer position using knowledge of time, 
attitude, camera parameters, and a rough estimation of the observer position to identify 
the body observed and the sun illumination. Image processing follows a multi-step pro-
cess which produces an estimate for the relative position between observer and observed 
body. Preliminary steps remove image distortion and select high contrast pixel from the 
gradient of the image. Then, edge detection schemes attempt to select only pixels belong-
ing to the edge of the target body and use those pixels to obtain a first estimation of body 
centroid and distance. This estimation is then refined using a 2-Dimensional model 
(Gaussian) modeling the gradient behavior of a set of pixels selected around the illumi-
nated hard edge. These methods have been applied to synthetic images generated using 
the NASA’s EDGE software as well as to real images of the Moon taken from on board 
the ISS by a Nikon camera. Results from each of the image sets are presented and the 
strengths of the algorithm are evaluated against the Orion mission requirements. Areas of 
future work are suggested as well. 
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AAS 15-754

NEURAL NETWORK BASED ADAPTIVE CONTROLLER

FOR ATTITUDE CONTROL OF ALL-ELECTRIC SATELLITES

Suwat Sreesawet,* Venkatasubramani S. R. Pappu,†

Atri Dutta‡ and James E. Steck§

This paper considers the attitude control problem for an all-electric spacecraft during its 
transfer to the Geostationary Earth orbit. During the transfer, the spacecraft’s solar arrays 

need to point towards the Sun, except in eclipses, in order to operate the onboard electric 
thrusters. We propose a neural-network based adaptive controller, utilizing a Modified 
State Observer (MSO) methodology, for the attitude control of the all-electric spacecraft. 
The MSO generates adaptations to aid a traditional PD controller in tracking the com-
manded attitude and angular velocity, while the adaptive controller use the state estima-
tion error (instead of the tracking error) to account for the uncertainties. Numerical simu-
lations illustrate the performance of the proposed controller for cases of changing space-
craft moment of inertia due to fuel burn, the presence of a disturbing torque due to thrust-
er misalignment and lack of attitude tracking during eclipses. 
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AAS 15-771

ATTITUDE DYNAMICS OF

A NEAR-SYMMETRIC VARIABLE MASS CYLINDER

Angadh Nanjangud* and Fidelis O. Eke†

This paper examines the attitude motion of a near-symmetric cylinder with uniform mass 
loss. Since the fundamental equations governing the motion of a near-symmetric system 
are typically non-linear, it is often difficult, or even impossible, to generate analytical so-
lutions. In this paper, an approximation approach to linearize the equations of motion for 
a class of such systems to obtain analytical solutions is presented. Results from the ap-
proximate analytical solution and the numerical simulation of the exact nonlinear equa-
tions of attitude motion are contrasted and a simplification to the linear model is briefly 
explored. 
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AAS 15-777

SATELLITE MAGNETISM: TORQUE RODS FOR EYASSAT3

ATTITUDE CONTROL*

David J. Richie,† Maxime Smets,‡ Jean-Christophe Le Roy,‡

Michael Hychko§ and Jean-Remy Rizoud**

Often considered only for satellite reaction wheel desaturation, when employed correctly, 
torque rods are an effective, independent means of satellite pointing control: both on orbit 
and in the classroom. In fact, the US Air Force Academy has recently developed a Cu-
beSat classroom demonstrator known as EyasSat3, complete with reaction wheels, light 
detecting photo-resistors, a magnetometer, and three-axis magnetic torque rods as well as 
several other attitude control sensor and actuator systems. Previous papers have investi-
gated these EyasSat3 systems, but none, including the contractor through its provided 
documentation, have focused on the EyasSat3 predicted and demonstrated torque rod per-
formance with and without the one-axis Helmholtz cage, an effective method to control 
the background magnetic field in laboratory (thus classroom) conditions. In this work, 
spacecraft attitude dynamics, magnetic field dynamics, and magnetic actuation funda-
mental principles, torque rod and Helmholtz cage hardware sizing, and the resulting Ey-
asSat3 performance are presented. The benefits are wide reaching as this simple, yet ef-
fective demonstration technique gives tomorrow’s leaders, including Academy cadets, a
hands-on learning experience that will shape their mastery of key attitude control princi-
ples. 
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AAS 15-782

DETECTION STRATEGIES FOR HIGHRATE,

LOW SNR STAR DETECTIONS

Laila Kazemi,* John Enright† and Tom Dzamba‡

We present an assessment of various image thresholding and centroiding algorithms to 
improve star tracker centroiding accuracy at moderate slew rates (< 10° / s). This work 
presents an image processing algorithm for star images that preserves star tracker detec-
tion accuracy and is able to detect dim stars up to slew rates less than 10° / s. Most star 
detection algorithms in literature are designed to work in stationary imaging conditions. 
In this study we explore the algorithmic tradespace for detecting dim elongated stars. The 
primary factors we consider are: the detection strategy and the sensitivity to exposure 
time. The performance of the algorithms are assessed using simulations and lab testing. 
The primary performance metrics are false positive ratio, and false negative ratio of star 
pixels. We introduced a new algorithm for star detection in moderate slew rates that in-
creases the star detection accuracy in moderate slew rates and it is robust to stray light. 
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AAS 15-784

CIRCULANT ZERO-PHASE LOW PASS FILTER DESIGN

FOR IMPROVED ROBUSTIFICATION

OF ITERATIVE LEARNING CONTROL

Bing Song* and Richard W. Longman†

Iterative learning control can produce zero tracking error to a command that is repeated, 
each time starting from the same initial condition. Spacecraft applications include repeat-
ed scanning maneuvers with fine pointing equipment. A zero-phase frequency cutoff of 
the learning is usually needed to robustify to residual modes or parasitic poles. Because 
ILC is a finite time problem, and frequency response is a steady state property, there is 
some mismatch when using normal frequency cutoff. A zero-phase Butterworth filter 
needs initial conditions specified at the start and at the end of the time interval. These 
produce transients at both beginning and end of the trajectory that are not related to the 
filter robustification objective. It is demonstrated that these issues in the Matlab filtfilt 
function can produce instability of the learning process. This paper presents a different 
approach for ILC that designs a zero phase filter using a circulant matrix and prescribes a 
reflected extension of the signal to be filtered. The approach makes the finite time filter 
represent the true desired steady state frequency response behavior, it eliminates the 
mismatch, eliminates the issues associated with choice of initial conditions and resulting 
transients, and eliminates the instability issue. Similar cliff filter designs are also consid-
ered. 
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AAS 15-788

INCORPORATING ANGULAR RATE SENSORS FOR DERIVATIVE

CONTROL OF AN EDUCATIONAL CUBESAT*

Brian W. Kester,† Richard Phernetton,‡ A. Saravanan,§

Lim Wei Shen Noel§ and David J. Richie**

The United States Air Force Academy’s EyasSat3 is a low cost platform aimed at provid-
ing students with hands-on experience in satellite subsystem design as a part of an inte-
grated space systems engineering curriculum. In previous work a single-axis controller 
was developed for EyasSat3 using photocell sensors and reaction wheels to orient the 
spacecraft toward a light source and follow it, but transient response to a step input yield-
ed poor overshoot performance. One method for improving transient response is by 
providing derivative feedback and direct derivative feedback can be obtained via an an-
gular rate sensor. When initially employed on EyasSat3, the angular rate sensors provided 
unreliable measurements and needed to be characterized and corrected. This paper out-
lines the basic implementation of the single-axis controller and describes the efforts to 
correct the on-board angular rate sensors, culminating in a software solution to the prob-
lem. The single axis controller provides a baseline for future 3-axis control design and 
provides critical sensor and actuator characterizations to be used in upcoming control 
strategies. 
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AAS 15-797

SOLAR SAIL SPACECRAFT BOOM VIBRATION

DURING DEPLOYMENT AND DAMPING MECHANISMS

Omer Atas,* Ertan Demiral† and Ozan Tekinalp‡

Boom deployment vibration analysis is presented for a solar sail 3U Cubesat. The damp-
ing of the boom vibration using shape memory alloys is examined. It is found that shape 
memory alloys do not reduce vibration below a certain level. Vibration damping via in-
herent friction in the deployment system is also considered. The analysis showed that the 
vibration may be completely damped due to the inherent friction in the deployment sys-
tem. 
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AAS 15-804

SINGULARITY ANALYSIS OF CONTROL MOMENT GYROS

ON GYROELASTIC BODY

Quan Hu,* Yao Zhang,† Jingrui Zhang‡ and Zixi Guo§

Control moment gyro (CMG) is a widely used device for generating control torques for 
spacecraft attitude control without expending propellant. Because of its effectiveness and 
cleanness, it has been considered to be mounted on a space structure to achieve vibration 
suppression. The resultant system is the so-called gyroelastic body, on which the CMGs 
could exert both torques and modal forces. Therefore, the CMGs can be used to simulta-
neously achieve attitude maneuver and vibration reduction of a flexible spacecraft. In this 
paper, we consider the singularity problem in such an application of CMGs. The dynam-
ics of an unconstrained gyroelastic body is established, from which the output equation of 
the CMGs is extracted. Then, torque singular state and modal force singular state are de-
fined and visualized to demonstrate the singularity problem. Numerical examples of sev-
eral typical configuration on a gyroelastic body are given. Finally, a steering law allow-
ing output error is designed. 
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AAS 15-810

RANDOM MATRIX BASED APPROACH TO QUANTIFY

THE EFFECT OF MEASUREMENT NOISE ON MODEL IDENTIFIED 

BY THE EIGENVALUE REALIZATION ALGORITHM

Kumar Vishwajeet,* Puneet Singla† and Manoranjan Majji‡

This paper focuses on the development of analytical methods for uncertainty quantifica-
tion of system matrices obtained by the Eigenvalue Realization Algorithm (ERA) to 
quantify the effect of noise in the observation data. Starting from first principles, analyti-
cal expressions are presented for the probability density function for norm of system ma-
trix by application of standard results in random matrix theory. Assuming the observa-
tions to be corrupted by zero mean Gaussian noise, the distribution for the Hankel matrix 
is represented by the non-symmetric Wishart distribution. From the Wishart distribution, 
the joint density function of the singular value of the Hankel matrix are constructed. 
These expressions enable us to construct the probability density functions for the norm of 
identified system matrices. Numerical examples illustrate the applications of ideas pre-
sented in the paper. 
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AAS 15-813

AFFINE INVARIANT TRACKING OF IMAGE FEATURES

UTILIZING IMU DATA

Brian Bergh,* Manoranjan Majji† and Xue Iuan Wong*

Feature extraction and tracking methods that incorporate relative pose estimates of the 
camera system are presented in this paper. It is anticipated that, by accounting for the rig-
id motion parameters sensed independently by an inertial measurement unit (or a star 
camera), better characterization of the optical flow of the image features can be accom-
plished (i.e., sensor fusion). We leverage the first order effects incurred by the optical 
flow to improve the performance of feature tracking algorithms. Starting from first prin-
ciples, a systematic approach is provided in this paper to provide first order estimates of 
the affine deformations incurred by the imaging process due to the rigid body motions of 
the sensor platform. In addition to capturing view-point variations, three additional pa-
rameters are introduced in the image plane deformation model to capture the effects of 
illumination variations and image scale. The key developments of this theory affect all 
aspects of photogrammetry and vision based relative navigation, useful in spacecraft 
proximity operations. 
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AAS 15-816

GENERALIZED MOMENTUM CONTROL OF THE SPIN-

STABILIZED MAGNETOSPHERIC MULTISCALE FORMATION

Steven Z. Queen,* Neerav Shah,* Suyog S. Benegalrao*

and Kathie Blackman†

The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, 
spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. 
The on-board attitude control system adjusts the angular momentum of the system using 
a generalized thruster-actuated control system that simultaneously manages precession, 
nutation and spin. Originally developed using Lyapunov control-theory with rate-
feedback, a published algorithm has been augmented to provide a balanced attitude/rate 
response using a single weighting parameter. This approach overcomes an orientation 
sign-ambiguity in the existing formulation, and also allows for a smoothly tuned-response 
applicable to both a compact/agile spacecraft, as well as one with large articulating ap-
pendages. 
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AAS 15-507

IMPULSIVE HALO TRANSFER TRAJECTORY DESIGN AROUND

SEL1 POINT WITH MULTIPLE CONSTRAINTS

Hao Zeng,* Jingrui Zhang,† Mingtao Li‡ and Zixi Guo§

Many plans have been proposed which aim to take advantage of the growing scientific 
interest in the region of space near Sun-Earth/Moon libration points. This paper provides 
a method to design of transfers from LEOs to Sun-Earth / Moon L1 halo orbits with mul-
tiple constraints, which include orbital radius, orbit inclination, right ascension of ascend-
ing node (RAAN) and track angle. The methodology includes differential correction and 
initial value expression that deal with the initial guesses of differential correction. Mean-
while, in view of multiple solution problems of RAAN in different launch epoch, a rela-
tionship between launch epoch constraint and RAAN constraint is introduced to guaran-
tee convergence of the algorithm. Finally, using the methodology, impulsive transfer tra-
jectory from a 200km Earth parking orbit to SEL1 point orbit is designed with multi-
restriction on different launch sites. Additionally, finding similar solutions with launches 
in different months is obtained to expand the launch opportunities. 
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AAS 15-519

LISA PATHFINDER – ROBUST LAUNCH WINDOW DESIGN FOR A 

TRANSFER TOWARDS A LARGE AMPLITUDE ORBIT ABOUT

THE SUN-EARTH LIBRATION POINT 1

Florian Renk,* Bram de Vogeleer† and Markus Landgraf‡

The LISA Pathfinder mission is scheduled for launch in the fourth quarter of 2015. The 
operational orbit of LPF has been chosen to be a large amplitude quasi-Halo orbit about 
the Sun-Earth Libration Point 1. The launch will be from Kourou, French Guyana, on Eu-
rope’s small payload VEGA launcher. The performance of the VEGA does not allow for 

a direct injection towards the Sun-Earth Libration Point region, but only allows for an 
injection onto a near equatorial eccentric orbit with 1539 km x 207 km apogee and peri-
gee altitude, respectively. Consequently LPF must propel itself towards its operational 
orbit. This injection cannot be done in one manoeuvre without accepting significant grav-
ity loss. Thus, during the launch and early operations phase (LEOP) a sequence of several 
apogee raising manoeuvres is required to finally inject LPF onto the stable manifold of a 
suitable libration point orbit. During this phase the S/C will travel through the radiation
belts several times and thus the optimization of the apogee raising sequence will not only 
require a minimization of the transfer ΔV, but it will also require a minimization of the 
radiation dose to protect the sensitive payload. To allow for a robust transfer design the 
launch window calculations must allow for several failure scenarios during this critical 
LEOP. The global optimization requirements to obtain a ΔV, radiation and contingency 
optimal apogee raising sequence will be introduced and the results of the optimization 
will be discussed. It will also describe how the daily launch times will be selected in or-
der to cover as many contingency cases as possible and potential recovery strategies. The 
paper will also introduce the required transfer navigation after the separation of the sci-
ence module from the payload module, since the science module is equipped with low 
thrust cold gas propulsion only, which in addition only allows thrusting into the Sun di-
rections. 
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AAS 15-522

TRAJECTORY DESIGNS FOR

A MARS HYBRID TRANSPORTATION ARCHITECTURE

Min Qu,* Raymond G. Merrill,† Patrick Chai‡ and David R. Komar§

NASA’s Human spaceflight Architecture Team (HAT) team is developing a re-usable 
hybrid transportation architecture in which both chemical and electric propulsion systems 
are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface 
of Mars, and other orbits around Mars. By combining chemical and electrical propulsions 
into a single spaceship and applying each where it is the most effective, the hybrid archi-
tecture enables a series of Mars trajectories that are more fuel-efficient than an all chemi-
cal architecture without significant increases in flight times. This paper documents the 
methods and techniques used for the trajectory designs of the architecture, some of which 
have shown to provide propellant or delta-V savings over traditional methods. 
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AAS 15-523

MULTI-OBJECTIVE HYBRID OPTIMAL CONTROL

FOR MULTIPLE-FLYBY INTERPLANETARY MISSION DESIGN

USING CHEMICAL PROPULSION

Jacob A. Englander,* Matthew A. Vavrina† and David Hinckley Jr.‡

Preliminary design of high-thrust interplanetary missions is a highly complex process. 
The mission designer must choose discrete parameters such as the number of flybys and 
the bodies at which those flybys are performed. For some missions, such as surveys of 
small bodies, the mission designer also contributes to target selection. In addition, real-
valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, 
and flyby altitudes must be chosen. There are often many thousands of possible trajecto-
ries to be evaluated. The customer who commissions a trajectory design is not usually 
interested in a point solution, but rather the exploration of the trade space of trajectories 
between several different objective functions. This can be a very expensive process in 
terms of the number of human analyst hours required. An automated approach is there-
fore very desirable. This work presents such an approach by posing the impulsive mission 
design problem as a multi-objective hybrid optimal control problem. The method is 
demonstrated on several real-world problems. 
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AAS 15-543

TRAJECTORY OPTIMIZATION FOR LOW-THRUST MULTIPLE 

ASTEROIDS RENDEZVOUS MISSION

Gao Tang,* Fanghua Jiang† and Junfeng Li‡

A mission designed to rendezvous with a dozen asteroids in the Main-Belt with low-
thrust propulsion within a preset duration is investigated. Indirect methods with homotop-
ic approaches and switching moments detection methods are implemented to optimize the 
low-thrust trajectories. Optimization of low-thrust trajectories between two asteroids is 
derived first. With fixed initial and terminating moments, the utilization of homotopic 
approach provides a fast method to obtain an approximation even with random guesses. 
To further improve the efficiency to optimize low-thrust transfers between low-
inclination low-eccentricity orbits, an effective method is proposed to help providing ini-
tial guesses. To optimize the low-thrust trajectory to rendezvous with a dozen asteroids in 
whole, the conditions for optimality are concluded which are used to build the shooting 
function. The method to split the trajectory into several segments and solve them sequen-
tially is applied first. Then the results obtained in the last step are used to provide initial 
guesses to optimize the low-thrust transfers in whole. The method to use them is pro-
posed with some basic derivations. Finally the homotopic form is removed and the bang-
off-bang control is directly solved. Numerical examples where three sequences contain-
ing a dozen asteroids are optimized demonstrates the validity of these methods. 
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AAS 15-552

MISSION ANALYSIS

FOR A HUMAN EXPLORATION INFRASTRUCTURE

IN THE EARTH-MOON SYSTEM AND BEYOND

Florian Renk* and Markus Landgraf†

In the frame of the International Space Exploration Coordination Working Group (ISECG) 
the European Space Agency (ESA) is participating in the planning of future exploration 
architectures. This participation also puts new challenges on the mission analysis of such 
architectures, since the mission analysis for an exploration architecture design is signifi-
cantly different from the one of a single mission design. It is the intention of this paper to 
foster the discussion and exchange on the link between architecture design and trajectory 
design rather than providing a scientific contribution to trajectory design. While the focus is 
currently on lunar exploration, the access to future destinations as e.g. the Sun-Earth Libra-
tion Point region as well as interplanetary departures towards asteroids and Mars may not 
be neglected. In the paper features that are relevant to a likely human-robotic partnership 
scenario of a space exploration architecture are discussed. The goal of the mission analysis 
must be to support the architecture analysts in finding an optimal solution considering the 
possible contributions of all international partners. While this might be sub-optimal from a 
single mission design perspective, a possible redundancy by choosing a specific mission 
scenario could greatly mitigate the operational and programmatic risk while enhancing the 
stainability of the overall design. One of the key areas will be the investigations of the 
Earth-Moon Libration Points as staging locations. Other staging locations which have been 
proposed are the Low Lunar Orbits (LLO)s and the distant retrograde orbits (DRO)s, the 
latter ones already foreseen as destinations for the asteroid retrieval mission and the second 
operational demonstration (EM-2) mission of the Orion vehicle (the first crewed mission). 
The paper gives an overview of existing research on some of the topics, the currently 
known pros and cons of the options and will explain on which aspects of the system engi-
neering, architecture engineering as well as the mission analysis the focus is currently put 
on.
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AAS 15-580

TARGETING THE MARTIAN MOONS

VIA DIRECT INSERTION INTO MARS’ ORBIT

Davide Conte* and David B. Spencer†

Here, we analyze interplanetary transfer maneuvers from Earth to Mars in order to target 
the Martian moons, Phobos and Deimos. Such analysis is done by solving Lambert’s 

Problem and investigating the necessary targeting upon arrival at Mars. Additionally, the 
orbital parameters of the arrival trajectories as well as the relative required Δv’s and times 

of flight were determined in order to define the optimal departure and arrival windows for 
a given range of dates. It was found that minimum Δv trajectories for Earth-Phobos and 
Earth-Deimos transfers do not necessarily occur when Δv for Earth-Mars transfers is min-
imized, but they depend on the orientation of the arrival orbit and the type of maneuver 
that is performed to rendezvous with one of the Martian moons. 
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AAS 15-582

GLOBAL OPTIMIZATION OF INTERPLANETARY TRAJECTORIES

IN THE PRESENCE OF REALISTIC MISSION CONSTRAINTS

David Hinckley Jr.,* Jacob A. Englander† and Darren Hitt‡

Interplanetary missions are often subject to difficult constraints, like solar phase angle 
upon arrival at the destination, velocity at arrival, and altitudes for flybys. Preliminary 
design of such missions is often conducted by solving the unconstrained problem and 
then filtering away solutions which do not naturally satisfy the constraints. However this 
can bias the search into non-advantageous regions of the solution space, so it can be bet-
ter to conduct preliminary design with the full set of constraints imposed. In this work a 
stochastic global search method is developed which is well suited to the constrained 
global interplanetary trajectory optimization problem. 
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AAS 15-585

EFFICIENT MANEUVER PLACEMENT

FOR AUTOMATED TRAJECTORY DESIGN

Damon Landau*

When designing a mission, the addition of a maneuver at the right spot often improves 
the utility of an otherwise mediocre trajectory. However, the additional degrees of free-
dom of finding the best maneuver location can severely complicate automated broad-
search algorithms. A computationally-efficient formulation that reduces the maneuver 
design space to a single dimension is presented, where the efficacy of additional maneu-
vers along previously computed transfers is calculated explicitly via Lawden’s “primer 

vector.” Examples include leveraging maneuvers to ease capture at Europa, phasing ma-

neuvers to enable resonant-hopping among Saturn’s moons, and broken-plane maneuvers 
on transfers to Mars. 
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AAS 15-588

EARTH-MARS TRANSFERS

THROUGH MOON DISTANT RETROGRADE ORBIT

Davide Conte,* Marilena Di Carlo,† Koki Ho,‡

David B. Spencer§ and Massimiliano Vasile**

This paper focuses on trajectory design which is relevant for missions that would follow 
NASA’s Asteroid Redirect Mission (ARM) to further explore and utilize asteroids and 

eventually human Mars exploration. Assuming that a refueling gas station is present at a 
given Lunar Distant Retrograde Orbit (DRO), we analyze ways of departing from the 
Earth to Mars via that DRO. Thus, the analysis and results presented in this paper add a 
new cis-lunar departure orbit for Earth-Mars missions. Porkchop plots depicting the re-
quired C3 at launch, v∞ at arrival, Time of Flight (TOF), and total ΔV for various DRO 

departure and Mars arrival dates are created and compared with results obtained for low 
ΔV LEO to Mars trajectories. The results show that low ΔV DRO to Mars transfers gen-

erally have lower ΔV and TOF than LEO to Mars maneuvers.
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AAS 15-590

MANY-REVOLUTION LOW-THRUST ORBIT TRANSFER

COMPUTATION USING EQUINOCTIAL Q-LAW

INCLUDING J2 AND ECLIPSE EFFECTS

Gábor I. Varga* and José M. Sánchez Pérez†

Mission designers addressing the computation of low-thrust many-revolution transfers 
need versatile and reliable tools for solving the problem with efficient computational 
times. This paper proposes a Lyapunov feedback control method, Q-law by Petropoulos
with algorithm modifications to accommodate for the singularities in the original equa-
tions and to include the most relevant perturbations, such as the J2 perturbation and the 
effect of coasting during eclipse periods. The optimization of the control-law parameters 
via a multi-objective evolutionary algorithm (NSGA-II) improves the results significantly 
and permits to easily compute the minimum time transfer and a well-spread Pareto front, 
trading transfer time versus propellant. 
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AAS 15-591

OPTIMIZING THE SOLAR ORBITER 2018 OCTOBER 

TRAJECTORY TO INCREASE THE DATA RETURN

José M. Sánchez Pérez,* Waldemar Martens† and Yves Langevin‡

The ESA-NASA Solar Orbiter mission has recently shifted the launch date to October 
2018. Further analysis of the planned trajectory has revealed an inferior data downlink 
capability than all previous trajectories regarded for the mission. Being the data bit rate 
inversely proportional to the square of the Earth distance, it becomes critical to phase the 
science orbit such that several aphelia are close to the Earth providing extended periods 
with maximum downlink capability. This paper describes alternative trajectories that im-
prove significantly the data return overall for the mission and also in particular reaching 
an improvement factor of 2 during the core science period. 

[View Full Paper] 

                                                                
* Mission Analysis Section, ESA-ESOC, Robert-Bosch-Straße 5, Darmstadt, 64293, Germany.  
E-mail: jose.manuel.sanchez.perez@esa.int. 
† ESA-ESOC, Robert-Bosch-Straße 5, Darmstadt, 64293, Germany. 
‡ IAS - Institut d'Astrophysique Spatiale, Université Paris Sud, Bâtiment 121, 91405, Orsay, France. 

186

http://www.univelt.com/book=5459


AAS 15-594

ANALYTICAL LOW-THRUST TRANSFER DESIGN

BASED ON VELOCITY HODOGRAPH

D. J. Gondelach* and R. Noomen†

Shape-based models can be used to approximate low-thrust transfer orbits between celes-
tial bodies. Here, a new model is proposed, which is based on simple analytical base 
functions that together represent the velocity of the spacecraft. After integration, these 
base functions also yield analytical expressions for distances traveled. As a result, both 
the velocity and the trajectory of a transfer can be modeled analytically with a series of 
such base functions, which can be chosen and scaled at will. Constraints (i.e. conditions 
on initial and final position and velocity) can be satisfied directly, and a constraint on the 
final polar angle can be met with a straightforward, fast numerical integration. The tech-
nique allows for direct solutions with no degrees of freedom, but also facilitates a more 
extensive analytical modeling where certain aspects of the resulting transfer trajectory 
(e.g. required ΔV, maximum acceleration) can be optimized. The main characteristics of 

the technique are illustrated in a number of cases: transfers to Mars and Mercury. 
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AAS 15-598

IDENTIFYING ACCESSIBLE NEAR-EARTH OBJECTS FOR 

CREWED MISSIONS WITH SOLAR ELECTRIC PROPULSION

Stijn De Smet,* Jeffrey S. Parker,† Jonathan F. C. Herman,* Jonathan Aziz,*

Brent W. Barbee‡ and Jacob A. Englander‡

This paper discusses the expansion of the Near-Earth Object Human Space Flight Acces-
sible Targets Study (NHATS) with Solar Electric Propulsion (SEP). The research investi-
gates the existence of new launch seasons that would have been impossible to achieve 
using only chemical propulsion. Furthermore, this paper shows that SEP can be used to 
significantly reduce the launch mass and in some cases the flight time of potential mis-
sions as compared to the current, purely chemical trajectories identified by the NHATS 
project. 
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AAS 15-600

PERIAPSIS POINCARÉ MAPS FOR PRELIMINARY TRAJECTORY 

DESIGN IN PLANET-MOON SYSTEMS

Diane C. Davis,* Sean M. Phillips† and Brian P. McCarthy‡

Spaceflight in regimes where multiple gravitational bodies simultaneously affect a space-
craft trajectory is increasingly common. However, preliminary trajectory design in the 
presence of two or more large bodies is challenging due to the complicated nature of such 
orbits. In this investigation, periapsis Poincaré maps are employed to characterize the de-
sign space in the vicinity of planetary moons. Using an interactive visualization tool, ini-
tial conditions are easily selected to satisfy a variety of mission applications in multi-
body systems. In particular, long-term orbits around the smaller primary in planet-moon 
systems are considered. 
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AAS 15-606

A NEW ARCHITECTURE FOR EXTENDING THE CAPABILITIES 

OF THE COPERNICUS TRAJECTORY OPTIMIZATION PROGRAM

Jacob Williams*

This paper describes a new plugin architecture developed for the Copernicus spacecraft 
trajectory optimization program. Details of the software architecture design and devel-
opment are described, as well as examples of how the capability can be used to extend 
the tool in order to expand the type of trajectory optimization problems that can be 
solved. The inclusion of plugins is a significant update to Copernicus, allowing user-
created algorithms to be incorporated into the tool for the first time. The initial version of 
the new capability was released to the Copernicus user community with version 4.1 in 
March 2015, and additional refinements and improvements were included in the recent 
4.2 release. It is proving quite useful, enabling Copernicus to solve problems that it was 
not able to solve before. 

[View Full Paper] 

                                                                
* Aerospace Engineer, ERC Inc. (JSC Engineering, Science, and Technology Contract), 2224 Bay Area Blvd., Houston, 
Texas 77058, U.S.A. 

190

http://www.univelt.com/book=5463


AAS 15-607

UNSCENTED OPTIMIZATION

I. Michael Ross,* Ronald J. Proulx† and Mark Karpenko‡

Unscented optimization combines the concept of the unscented transform with standard 
optimization to produce a simple technique for mitigating the effect of uncertainties. This 
new approach addresses some long-standing challenges in practical probabilistic program-
ming by trading some well-known theoretical and computational difficulties to an a poste-
riori estimation of risk and reliability. Every practical optimization problem can be un-
scented; hence, the concepts introduced in this paper can be applied to a wide range of 
problems in astrodynamics. If unscented optimization techniques are used during the early 
phases of a mission design, it holds the potential to provide program managers quick esti-
mates on risk, reliability and associated costs so that “optimal missions” do not suffer from 

cost overruns due to requirements creep. Using numerical examples, we demonstrate how it 
is possible to reduce risk from 50% all the way down to 1%. 
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AAS 15-609

HIGH-FIDELITY LOW-THRUST SEP TRAJECTORIES FROM 

EARTH TO JUPITER CAPTURE

Sean Patrick* and Alfred E. Lynam†

Triple Satellite aided capture sequences use gravity-assists at three of Jupiter’s four mas-

sive Galilean moons to capture into Jupiter orbit. In this paper, three solar electric propul-
sion (SEP), low-thrust trajectories from Earth to Jupiter capture are optimized using 
JPL’s high-fidelity Mystic software. A Mars gravity assist is used to augment the helio-
centric trajectories. Gravity assist flybys of Callisto, Ganymede, and Io or Europa are 
used to capture into Jupiter Orbit. With between 89.8 and 137.2-day periods, the orbits 
are shorter than most capture orbits. Thus, the main satellite tour of the Jupiter mission 
could begin sooner using this strategy. 
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AAS 15-611

LISSAJOUS ORBIT CONTROL FOR THE DEEP SPACE CLIMATE 

OBSERVATORY SUN-EARTH L1 LIBRATION POINT MISSION

Craig E. Roberts,* Sara Case† and John Reagoso‡

On June 7, 2015, the Deep Space Climate Observatory mission—launched February 11, 
2015—became the first National Oceanic and Atmospheric Administration spacecraft to 
be placed in orbit about the Sun-Earth L1 collinear point, a location ideal for its dual so-
lar weather measurement and Earth full-disk imaging programs. In addition to orbital sta-
tionkeeping maneuvers, long-term control of the Lissajous orbit is necessary so that it 
avoids a Solar Exclusion Zone (SEZ) of four degrees about the Sun, is required. The ‘Z-
axis control’ technique consists of maneuvers to freeze the Lissajous phase such that the 
same avoidance pattern is repeated continually. Maneuver strategy for both stationkeep-
ing and SEZ avoidance are described. Stationkeeping techniques similar to those used for 
past and current libration point missions will be adapted to use for DSCOVR. Similarly, 
an adaptation of the successful SEZ avoidance technique first used in controlling the Lis-
sajous orbit of the Advanced Composition Explorer mission from 1999 to 2001 will also 
be used for DSCOVR. 
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AAS 15-613

EARLY MISSION MANEUVER OPERATIONS

FOR THE DEEP SPACE CLIMATE OBSERVATORY

SUN-EARTH L1 LIBRATION POINT MISSION

Craig E. Roberts,* Sara Case,† John Reagoso‡ and Cassandra Webster§

The Deep Space Climate Observatory mission launched on February 11, 2015, and in-
serted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libra-
tion point. This paper presents an overview of the baseline transfer orbit and early mis-
sion maneuver operations leading up to the start of nominal science orbit operations. In 
particular, the analysis and performance of the spacecraft insertion, mid-course correction 
maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-
paring the baseline orbit with actual mission results and highlighting mission and opera-
tions constraints. 
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AAS 15-616

RAPID GENERATION OF OPTIMAL ASTEROID POWERED 

DESCENT TRAJECTORIES VIA CONVEX OPTIMIZATION

Robin Pinson* and Ping Lu†

This paper investigates a convex optimization based method that can rapidly generate the 
fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously 
design the optimal powered descent trajectory on-board the spacecraft immediately prior 
to the descent burn. Compared to a planetary powered landing problem, the major diffi-
culty is the complex gravity field near the surface of an asteroid that cannot be approxi-
mated by a constant gravity field. This paper uses relaxation techniques and a successive 
solution process that seeks the solution to the original nonlinear, nonconvex problem 
through the solutions to a sequence of convex optimal control problems. 
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AAS 15-624

GUIDANCE AND NAVIGATION OF A CALLISTO-IO-GANYMEDE 

TRIPLE FLYBY JOVIAN CAPTURE

Alan M. Didion* and Alfred E. Lynam†

Use of a triple-satellite-aided capture to enter Jovian orbit reduces insertion ΔV and pro-

vides close flyby science opportunities at three of Jupiter’s four large Galilean moons. 

This capture can be performed while maintaining appropriate Jupiter standoff distance 
and setting up a suitable apojove for plotting an ex-tended tour. This paper focuses on the 
guidance and navigation of such trajectories in the presence of spacecraft state errors, 
ephemeris errors, and maneuver execution errors. A powered-flyby trajectory correction 
maneuver (TCM) is added to the nominal trajectory at Callisto and the nominal Jupiter 
orbit insertion (JOI) maneuver is modified to both complete the capture and target the 
Ganymede flyby. A third TCM is employed after the flybys to act as a JOI cleanup ma-
neuver. A Monte Carlo simulation shows that the statistical ΔV required to correct the 

trajectory is quite manageable. 
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AAS 15-629

SWITCHING PATHS AT THE LUNAR ‘ROUTER’: FINDING VERY 

LOW-COST TRANSFERS BETWEEN USEFUL TRAJECTORY

SEQUENCES IN THE EARTH-MOON SYSTEM*

Timothy P. McElrath† and Rodney L. Anderson‡

The Earth-Moon system allows many types of transfers between lunar encounters, includ-
ing orbits with low perigees. Combinations of transfers can produce several different use-
ful ballistic trajectory sequences. With the right orbit types (particularly backflips) in-
cluded, a low thrust vehicle can cheaply switch between sequences that have very differ-
ent characteristics. Several useful repeat sequences are presented in the circular restricted 
3-body problem (CR3BP) model, and examples of these are demonstrated in the full 
ephemeris. These trajectory sequences would be particularly applicable for returned as-
teroids (in the near term) and lunar-derived resource transport (in the long term), where 
only very limited delta-V is available due to the large mass of the vehicle. 
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AAS 15-638

NODE PLACEMENT CAPABILITY FOR SPACECRAFT

TRAJECTORY TARGETING IN AN EPHEMERIS MODEL

Christopher Spreen,* Kathleen Howell† and Belinda Marchand‡

Targeting and guidance are nontrivial processes that require experience and system 
knowledge to implement efficiently. Additional complexities arise when these processes 
are implemented within a non-Keplerian dynamical environment. In such applications, 
results are usually obtained by employing a discretized representation of the trajectory in 
terms of a series of nodes or patch points, each reflecting the full state of the vehicle 
along its trajectory at a specific time. The objective of this investigation is the develop-
ment of an interactive, as well as, an automated process, in an ephemeris model, through 
which nodes are modified in the numerical algorithm by leveraging stability information 
to support trajectory modification. Through these processes, solutions in complex re-
gimes are constructed to enable successful operations. A hybrid differential corrections 
algorithm that combines strengths from several previous algorithms is also presented. 
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AAS 15-641

CREATING AN END-TO-END SIMULATION FOR THE MULTI-

PURPOSE CREWED VEHICLE AND SPACE LAUNCH SYSTEM

Daniel K. Litton,* Rafael A. Lugo,† Min Qu,‡ Anthony S. Craig,§

Jeremy D. Shidner,† Badejo O. Adebonojo, Jr.,**

Richard G. Winski† and Richard W. Powell†

The NASA Engineering & Safety Center (NESC) has commissioned a study to determine 
the benefits of combining the Space Launch System (SLS) high fidelity trajectory simula-
tions for ascent, the Multi-Purpose Crew Vehicle’s (MPCV) simulations for on-orbit op-
erations, and Earth re-entry simulation using a Multidisciplinary Design Optimization 
(MDO) approach. A commercially available program, Isight, has been selected to com-
bine and optimize all the facets for the Exploration Mission 1 (EM-1). This seamless in-
tegration of all the aspects will enable Mission Planners to directly determine the interac-
tions between all phases of the mission. Mission Planners will have more insight in de-
termining overall mission feasibility, margins, and vehicle sizing. The end-to-end integra-
tion enables investigation of mission design parameters such as only launching during the 
day. The ability to easily modify parameters such as launch time and main engine cut-off 
(MECO) targets not only help determine mission feasibility but also facilitate saving on 
operation and mission design costs. 

[View Full Paper] 

                                                                
* Aerospace Engineer, Atmospheric Flight & Entry Systems Branch, NASA Langley Research Center, Hampton, Vir-
ginia 23681, U.S.A. 
† Aerospace Engineer, Analytical Mechanics Associates, Inc., 21 Enterprise Parkway Suite 300, Hampton, Virginia 
23666-6413, U.S.A. 
‡ Staff Scientist, Analytical Mechanics Associates, Inc., 21 Enterprise Parkway Suite 300, Hampton, Virginia 23666-
6413, U.S.A. 
§ Aerospace Engineer, ERC, Inc./Jacobs ESSSA Group, Huntsville, Alabama 35812, U.S.A. 
** Trajectory Analysis Engineer, Jacobs Technology/Jacobs ESSSA Group, Huntsville, Alabama 35812, U.S.A. 

199

http://www.univelt.com/book=5664


AAS 15-644

PLANAR OPTIMAL TWO-IMPULSE TRANSFERS

Thomas Carter* and Mayer Humi†

The problem of finding a planar two-impulse transfer orbit between two known Keplerian 
orbits that minimizes the total characteristic velocity of the transfer arc is examined. Us-
ing a transformation of the variables presented in previous work, necessary conditions for 
an optimal transfer are determined, followed by a proof that an optimal transfer exists, 
concluding with some sufficiency arguments. 

[View Full Paper] 

                                                                
* Professor Emeritus, Department of Mathematics, Eastern Connecticut State University, Willimantic, Connecticut 
06226, U.S.A. E-mail: cartert@easternct.edu. 
† Professor, Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, 
U.S.A. E-mail: mhumi@wpi.edu. 

200

http://www.univelt.com/book=5665


AAS 15-645

PLANAR OPTIMAL TWO-IMPULSE CLOSED-FORM SOLUTIONS 

OF TRANSVERSE TRANSFERS

Thomas Carter* and Mayer Humi†

The problem of finding a planar two-impulse transfer orbit between two known Keplerian 
orbits that minimizes the total characteristic velocity of the transfer arc is examined. 

Closed-form minimizing solutions are found for all cases in which elliptical boundary 
orbits are coaxial and all cases in which apses of boundary elliptical orbits are equidistant 
from the center of attraction. For these cases the minimizing transfers are transverse, and 
the transfer orbits are tangent to the boundary orbits at apses. 
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AAS 15-647

OPTIMAL ENERGY MANAGEMENT STEERING FOR LAMBERT’S
PROBLEM USING HYBRID OPTIMIZATION METHOD

Sihang Zhang,* Hongguang Yang† and Chao Han‡

For Lambert’s problem, the optimal energy management steering method and the general 

optimal energy management steering method have been proposed and utilized to mini-
mize the maneuver of the thruster during the burn. In comparison with existing method, 
the optimal energy management steering, with smaller maneuver angle of the thruster, is 
smoother and more accurate. A hybrid optimization method is implemented for the opti-
mal steering solution whereby the costates are added to the vector of free parameters and 
the performance index is directly minimized. Numerical results are presented to demon-
strate the efficiency, accuracy and stability of the method. 
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AAS 15-658

TRAJECTORY DESIGN OF

THE TIME CAPSULE TO MARS STUDENT MISSION

Jonathan D. Aziz,* Sean Napier,† Stijn De Smet† and Jeffrey S. Parker‡

Time Capsule to Mars (TC2M) is a student-led mission with collaboration across univer-
sities guided by industry volunteers that will deliver a time capsule containing digital 
text, images, audio and video to Mars. TC2M intends to demonstrate the capability of 
CubeSats for interplanetary travel while leveraging new CubeSat subsystem technologies. 
This work highlights the TC2M trajectory design and optimization. A study of the 
tradespace, namely mission event dates, fuel requirements and arrival conditions, is pre-
sented for a target launch in 2018. An ion Electrospray Propulsion System for CubeSats 
allows TC2M to escape Earth orbit and intercept Mars with minimum-time trajectories 
computed to be under 214 days. For minimum-fuel optimization, just 1.867 kg propellant 
of an 8.0 kg wet mass is required but at a longer 296 days time of flight. A nominal tra-
jectory is selected to illustrate the Earth-escape spiral and interplanetary transit that can 
guide TC2M towards direct entry into the Martian atmosphere. Investigation of missed-
thrust events along the nominal trajectory shows that carrying an excess 10% propellant 
mass is sufficient for mission success. 
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AAS 15-662

COMBINING SIMULATION TOOLS FOR END-TO-END

TRAJECTORY OPTIMIZATION

Ryan Whitley,* Jeffrey Gutkowski,† Scott Craig,‡ Tim Dawn,‡

Jacob Williams,§ Cesar Ocampo,** William B. Stein,††

Daniel Litton,‡‡ Rafael Lugo§§ and Min Qu‡‡

Trajectory simulations with advanced optimization algorithms are invaluable tools in the 
process of designing spacecraft. Due to the need for complex models, simulations are of-
ten highly tailored to the needs of the particular program or mission. NASA’s Orion and 

SLS programs are no exception. While independent analyses are valuable to assess indi-
vidual spacecraft capabilities, a complete end-to-end trajectory from launch to splash-
down maximizes potential performance and ensures a continuous solution. In order to 
obtain end-to-end capability, Orion’s in-space tool (Copernicus) was made to interface 
directly with the SLS’s ascent tool (POST2) and a new tool to optimize the full problem 

by operating both simulations simultaneously was born. 
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AAS 15-664

MULTI-OBJECTIVE SEARCH

FOR MULTIPLE GRAVITY ASSIST TRAJECTORIES

Demyan Lantukh* and Ryan P. Russell†

A systematic multiple gravity assist grid search and multi-level pruning algorithm is pre-
sented. Explore, a trajectory pathsolving tool, implements this parallelizable, breadth-first 
algorithm. Decomposing the problem into a sequence of subproblems enables the inclu-
sion of different trajectory segment and patching condition types. Comparisons between 
performing the search with ballistic transfers, impulsive maneuvers, and low-thrust ap-
proximation are presented. Pruning is conducted using constraints and multi-objective 
Pareto ranking with performance indices. The solution storage structure allows solution 
space subdivision and reduces data duplication. Detailed review of multiple gravity assist 
trajectory search methods and software provides context for the presented method. 
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AAS 15-668

EVOLUTIONARY OPTIMIZATION OF

A RENDEZVOUS TRAJECTORY FOR A SATELLITE FORMATION 

WITH A SPACE DEBRIS HAZARD

David W. Hinckley, Jr.* and Darren L. Hitt†

Orbital debris continues to pose a serious threat to space assets in low Earth orbit (LEO). 
In response, active debris mitigation approaches have been proposed – including the co-
ordinated activities of satellite formations. A critical first step is the determination of the 
optimal trajectory for the satellite formation to rendezvous with the debris subject to pre-
scribed mission constraints. Motivated by this scenario, differential evolution is used to 
optimize multi-satellite rendezvous trajectory problems with topological constraints. Ini-
tial impulsive maneuvers are sought for groups of N = 4; 5 satellites that lead to debris 
rendezvous in the form of a planar square and trigonal bipyramid, respectively. 

[View Full Paper] 

                                                                
* Graduate Student in Mechanical Engineering, University of Vermont, Burlington, Vermont 05405, U.S.A. 
† Professor of Mechanical Engineering, University of Vermont, Burlington, Vermont 05405, U.S.A. 

206

http://www.univelt.com/book=5470


AAS 15-682

FUEL-EFFICIENT PLANETARY LANDING GUIDANCE

WITH HAZARD AVOIDANCE

Yanning Guo,* Hutao Cui,† Yao Zhang‡ and Guangfu Ma§

Two improved zero-effort-miss (ZEM) and zero-effort-velocity (ZEV) optimal guidance 
laws are proposed in this paper based on the classical optimal feedback guidance theory 
in order to avoid obstacles as well as precision landing. The velocity of the vehicle is 
brought into the performance index, which will ensure the vehicle never crash the obsta-
cles, especially when the vehicle is close to an obstacle, the big value velocity can help 
the vehicle avoid it. Furthermore, two new avoidance strategies are put forward to make 
the landing process more reasonable, which rely on not only the experience but also the 
motion state of the vehicle. Finally, simulation results show the effectiveness of the 
methods proposed in this paper. 
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AAS 15-693

SIMPLE GRAVITATIONAL MODELS AND CONTROL LAWS

FOR AUTONOMOUS OPERATIONS IN PROXIMITY

OF UNIFORMLY ROTATING ASTEROIDS

Andrea Turconi,* Phil Palmer† and Mark Roberts‡

Maintaining missions in proximity of small bodies requires extensive orbit determination 
and ground station time due to a ground-in-the-loop approach. Recent developments in 
on-board navigation paved the way for autonomous proximity operations. The missing 
elements for achieving this goal are a gravity model, simple enough to be easily used by 
the spacecraft to steer itself around the asteroid, and guidance laws that can make use of 
such inherently simple model. In this paper we derive a simple three point mass model 
and propose control laws that can take advantage of the characteristics of this approxi-
mate model. 
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AAS 15-694

ASTEROID IMPACT MISSION: A POSSIBLE APPROACH

TO DESIGN EFFECTIVE CLOSE PROXIMITY OPERATIONS

TO RELEASE MASCOT-2 LANDER

Fabio Ferrari* and Michèle Lavagna†

The paper presents the design of the landing strategy, during close proximity operations 
of ESA’s Asteroid Impact Mission. The target of the mission is the binary asteroid sys-

tem 65803 Didymos and the objective of this work is to investigate design opportunities 
to land a small and passive probe on the smaller asteroid of the couple. The dynamics of 
the spacecraft in the proximity of the binary system is naturally modeled using a three-
body problem formulation. The landing requirements are highlighted and a suitable strat-
egy is selected, by conveniently exploiting three-body dynamics. Uncertainties in release 
and touch down conditions are modeled to guarantee the robustness of the chosen solu-
tion to achieve successful landing. 
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AAS 15-701

EXPLOITING SYMMETRY IN HIGH ORDER TENSOR-BASED

SERIES EXPANSION ALGORITHMS

Mohammad Alhulayil,* Ahmad Bani Younes† and James Daniel Turner‡

Many applications in science and engineering require the calculations of partial deriva-
tive models. Computational differentiation has been developed as a software technology 
for addressing this need. General numerical models are available for generating first-
fourth order sensitivity models. The challenge addressed in this work is concerned with 
efficiently generating and storing the tensor-based calculations. Sensitivity calculations 
are of interest for both initial conditions and parameters. A major challenge encountered 
in high dimensioned real-world applications, is that both the computations and data stor-
age requirements scale nonlinearly. This work addresses the problem of exploiting the 
tensor symmetry arising in the generation, storage, and computation using symmetrized 
models for hessian and higher order sensitivity tensors. Extensive modifications are re-
quired for operator-overloaded derivative tools for exploiting the symmetrized tensor 
models. Typical applications include problems in applied mathematics, probability theo-
ry, optimization, control theory, and computer science. Several applications are presented 
to demonstrate the significant impact on both memory allocations and symmetric-based 
computational algorithms. 
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AAS 15-702

EXPLOITING SPARSITY IN TENSOR-BASED COMPUTATIONAL 

DIFFERENTIATION ALGORITHMS

Mohammad Alhulayil,* Ahmad Bani Younes† and James Daniel Turner‡

High order tensor models for applications in science and engineering require the calcula-
tion of partial derivative models. It is well known that Jacobian sensitivity problems have 
sparse structures, for which many powerful and effective algorithms have been devel-
oped. This paper explores to extension of these sparse technologies for higher-order gra-
dient calculations. All partial derivatives are generated by using Computational differen-
tiation software. Two levels of sparsity are explored. First, known structural sparsity aris-
ing from the transformation of 2nd order differential equation models into state space 
form, where the resulting Jacobian structure easily exploited. Second, application-specific 
sparsity, where sensitivity calculations produce zero results for all derivative orders. Two 
issues are important for exploitation: first, the known zero sub-blocks of the gradient ten-
sor are replicated in the higher order tensors, which provides a significant boost in deriva-
tive calculation performance; and second, both memory usage and numerical computa-
tion are restructured. Numerical examples are presented using the classical two-body 
problem, where it is shown the performance boost for the known Jacobean structure is 
38X for a fourth-order approximation. 
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AAS 15-706

FAST SEARCH ALGORITHM OF HIGH-PRECISION

EARTH-MOON FREE-RETURN TRAJECTORY

Kun Peng,* Shingyik Yim,† Bainan Zhang,‡ Lei Yang,‡ Linli Guo,‡

Yanlong Bu§ and Sihang Zhang**

Free-return trajectory design is an important guarantee for the safety of manned lunar 
mission. This trajectory can ensure that the spacecraft returns to Earth without any ma-
neuver when the mission goes wrong. A fast search algorithm of high-precision Earth-
Moon free-return trajectory is proposed in this paper. It is consisted of four parts: 1) solu-
tion model establishment for high-precision free-return trajectory, 2) initial values esti-
mation for control variables, 3) multilevel search for free-return trajectory, 4) extended 
search for multiple types of free-return trajectory. This algorithm can search the accurate 
free-return trajectory without any designer-provided prior information, and can converge 
rapidly. 
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AAS 15-719

SOLAR SAIL TRANSFERS FROM EARTH TO THE LUNAR 

VICINITY IN THE CIRCULAR RESTRICTED PROBLEM

Ashwati Das-Stuart* and Kathleen Howell†

The lunar region enables a variety of mission scenarios that advance space exploration. 
However, a return to this region of space implies the development of alternative strategies 
to support affordable mission design options subject to limited resource utilization. 
Hence, a general solar sail framework is developed to probe the capabilities associated 
with transfer options employing natural pathways. Prior investigations related to Earth-
escape strategies, low thrust regimes and the development of desirable destination orbits 
at/near a primary all contribute. But, realistic mission constraints such as current sail 
technology levels, sail inefficiencies, occultation events and limitations on sail maneu-
verability all impact performance. 
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AAS 15-724

COMPARISON OF OVERALL PROPULSION SYSTEM 

EFFECTIVENESS FOR ORBIT INSERTION AND ESCAPE*

Nathan Strange† and James Longuski‡

Although specific impulse is often used as the primary measure of propulsion system ef-
ficiency, lower specific impulse systems with a smaller inert masses can often provide 
better performance than higher specific impulse systems. In addition, chemical propul-
sion systems can outperform much higher specific impulse electric propulsion systems 
when they can take advantage of the Oberth effect, i.e. an impulsive maneuver deep in a 
gravity well. We show that for many cases solid rockets would outperform higher specif-
ic impulse liquid systems. We also show that for low v-infinities, chemical systems 
would outperform electric propulsion systems for orbit insertion and escape maneuvers. 
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AAS 15-728

LOW-THRUST EARTH-ORBIT TRANSFER OPTIMIZATION USING 

ANALYTICAL AVERAGING WITHIN A SEQUENTIAL METHOD

David Morante,* Manuel Sanjurjo† and Manuel Soler†

A robust and flexible algorithm for computing optimal low-thrust Earth orbit transfer is 
proposed. This approach is based on three sequential steps of growing complexity. Each 
of the steps is grounded on methods developed in the literature and attempts to obtain 
near-optimal solutions in an effective manner. They will be reviewed independently 
comparing their own partial outcome, advantages and disadvantages. At the first and sec-
ond steps, analytical averaging is used to propagate efficiently the trajectory together 
with predefined control laws. Finally, based on the previous near-optimal solutions, the 
optimal control problem will be addressed via a Direct Collocation Method. 
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AAS 15-729

GENERALIZED LOGARITHMIC SPIRALS

FOR LOW-THRUST TRAJECTORY DESIGN

Javier Roa* and Jesús Peláez†

Shape-based approaches are practical for finding sub-optimal solutions during the prelimi-
nary design of low-thrust trajectories. Logarithmic spirals are the simplest, but of little 
practical interest due to having a constant flight-path angle. We prove that the same tangen-
tial thrust profile that generates a logarithmic spiral yields an entire family of generalized 
spirals. The system admits two integrals of motion, which are equivalent to the energy and 
the angular momentum equations. Three different subfamilies of spiral trajectories are ob-
tained depending on the sign of the constant of the generalized energy: elliptic, parabolic, 
and hyperbolic. Parabolic spirals are equivalent to logarithmic spirals. Elliptic spirals are 
bounded; never escape to infinity and the trajectory is symmetric. Two types of hyperbolic 
spirals have been found: the first has only one asymptote; the second has two asymptotes, 
the trajectory is symmetric and never falls to the origin. The solution is obtained when solv-
ing rigorously the equations of motion with no prior assumptions. Closed-form expressions 
for both the trajectory and the time of flight are provided. 
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AAS 15-756

MISSION DESIGN ANALYSIS FOR THE

MARTIAN MOON PHOBOS: CLOSE FLYBYS, MISSED THRUSTS, 

AND OTHER IN-FLIGHT ENTERTAINMENT*

Jeffrey Stuart,† Tim McElrath‡ and Anastassios Petropoulos§

A robotic mission to the Martian moons Phobos and Deimos would offer a wealth of sci-
entific information and serve as a useful precursor to potential human missions. In this 
paper, we investigate a prospective mission enabled by solar electric propulsion that 
would explore Phobos via a series of flybys followed by capture into orbit around the 
moon. Of particular interest are low ΔV options for capture and walkdown to the target 
science orbits aided by multi-body effects due to the mutual gravitational interaction of 
Phobos and Mars. We also consider contingency operations in the event of missed thrust 
or maneuver execution errors. 
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AAS 15-757

SYSTEMATIC DESIGN OF OPTIMAL LOW-THRUST TRANSFERS 

FOR THE THREE-BODY PROBLEM

Shankar Kulumani* and Taeyoung Lee†

A computational approach is developed for the design of continuous low thrust transfers 
in the planar circular restricted three-body problem. The transfer design method of invar-
iant manifolds is extended with the addition of continuous low thrust propulsion. A 
reachable region is generated and it is used to determine transfer opportunities, analogous 
to the intersection of invariant manifolds. The reachable set is developed on a lower di-
mensional Poincaré section and used to design transfer trajectories. This is solved numer-
ically as a discrete optimal control problem using a variational integrator. This provides 
for a geometrically exact and numerically efficient method for the motion in the three-
body problem. A numerical simulation is provided developing a transfer from a L1 peri-
odic orbit in the Earth-Moon system to a target orbit about the Moon. 
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AAS 15-758

TRAJECTORIES FOR A NEAR TERM MISSION

TO THE INTERSTELLAR MEDIUM

Nitin Arora,* Nathan Strange† and Leon Alkalai‡

Trajectories for rapid access to the interstellar medium (ISM) with a Kuiper Belt Object 
(KBO) flyby, launching between 2022 and 2030, are described. An impulsive-patched-
conic broad search algorithm combined with a local optimizer is used for the trajectory 
computations. Two classes of trajectories, (1) with a powered Jupiter flyby and (2) with a 
perihelion maneuver, are studied and compared. Planetary flybys combined with leverag-
ing maneuvers reduce launch C3 requirements (by factor of 2 or more) and help satisfy 
mission-phasing constraints. Low launch C3 combined with leveraging and a perihelion 
maneuver is found to be enabling for a near-term mission to the ISM. 
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AAS 15-759

FRACTIONATED SATELLITE SYSTEMS

FOR EARTH OBSERVATION MISSIONS:

FEASIBILITY AND PERFORMANCES ANALYSES

Daniele Filippetto* and Michèle Lavagna†

This paper aims at investigating the feasibility of fractionated satellite architecture for 
Earth observation missions. The payload fractionation, consisting in the physical distribu-
tion of the payload over a cluster of satellites flying in formation or constellation, can be 
obtained using either the same or a different payload in each satellite. Issues, possible so-
lutions and applications (visible/infrared and synthetic aperture radar remote sensing) of 
both of these approaches are analysed in this study. In particular, the problems of de-
ployment, configuration maintenance and reconfiguration are addressed with formation 
examples in different orbits. The results are critically discussed in the paper. 
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AAS 15-766

OPTIMAL LOW-THRUST GEOSTATIONARY TRANSFER ORBIT 

USING LEGENDRE-GAUSS-RADAU COLLOCATION

Andrew M. S. Goodyear* and David B. Spencer†

A reformulation of Edelbaum’s equations for low thrust orbit raising between two circu-

lar orbits with an inclination change using optimal control theory was performed. A 
nonsingular modified equinoctial element set was used, and higher order gravitational 
harmonics up to and including J5 were included within the model. An indirect optimiza-
tion scheme was performed to obtain an optimal pitch steering law, and the state and cos-
tate equations were solved using a Legendre-Gauss-Radau collocation scheme. The nu-
merical solution was broken up into two phases. The first phase has the objective of rais-
ing an orbit into a zone in which eclipsing is no longer an issue, and the second phase in-
volves solving a two-point boundary value problem in order to finish the maneuver. 
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AAS 15-775

PROGRADE LUNAR FLYBY TRAJECTORIES

FROM DISTANT RETROGRADE ORBITS

Kathryn E. Davis* and Jeffrey S. Parker†

This paper examines trajectories from Distant Retrograde Orbits (DROs) that perform 
prograde lunar flybys. Small perturbations are applied to nominal states on DROs and 
propagated forward in time. Perturbations as low as 20 m/s can initiate prograde lunar 
flybys and 13% of all nominal DRO states perturbed by 100 m/s will result in a prograde 
lunar flyby. Topologically similar trajectories have correlated perturbation directions. 
Prograde flybys from a given DRO are used as initial guesses to locate additional pro-
grade flybys from DROs of varying amplitudes. The results presented here may aid in 
designing low-cost transfers between DROs and other orbits. 
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AAS 15-783

PIECE-WISE CONSTANT CHARGING STRATEGY FOR THE

RECONFIGURATION OF A 3-CRAFT COULOMB FORMATION

Yinan Xu* and Shuquan Wang†

This paper investigates the non-equilibrium fixed-shape three-craft Coulomb formation 
reconfiguration problem. Being aware of that using feedback control approach results in 
the chattering of the charges due to the non-equilibrium nature of the system dynamics, 
this paper proposes a trajectory program approach to accomplish the reconfiguration. The 
entire maneuver trajectories are divided into multiple phases. During each phase, only 
two of the three craft are charged. In this way the relative trajectory of the charged space-
craft during a certain phase is a conic section. The entire trajectories are composed of 
patched conics and/or straight lines. The procedures determining the three-phase maneu-
ver strategy is developed, including a preadjusting phase and two transition phases. Nu-
merical simulations demonstrate the effectiveness of the algorithm and the elegance of 
the control charges. 
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AAS 15-785

ON THE ACCURACY

OF TRAJECTORY STATE TRANSITION MATRICES

Etienne Pellegrini* and Ryan P. Russell†

Accurate partial derivatives are of the utmost importance for optimization and root-
solving algorithms, but can prove challenging and computationally expensive to obtain. 
Modern space missions often require highly sensitive trajectories, increasing the need for 
accurate partials. Different techniques for computing state-transition matrices for trajecto-
ry optimization are analyzed, in particular for low-fidelity propagations. Analytical meth-
ods are compared to the complex step derivative approximation and finite differences 
methods, for a variety of problems and integration techniques. The subtle differences be-
tween variable- and fixed-step integration for partial computation are revealed, common 
pitfalls are observed, and recommendations are made to enhance the quality of state tran-
sition matrices. A main result is the demonstration of small but potentially significant er-
rors in the partials when they are computed with variational equations and a variable-step 
integrator. 

[View Full Paper] 

                                                                
* Graduate Student, Department of Aerospace Engineering and Engineering Mechanics, Cockrell School of Engineer-
ing, The University of Texas at Austin, W. R. Woolrich Laboratories, C0600, 210 East 24th Street, Austin, Texas 
78712-1221, U.S.A. 
† Assistant Professor, Department of Aerospace Engineering and Engineering Mechanics, Cockrell School of Engineer-
ing, The University of Texas at Austin, W. R. Woolrich Laboratories, C0600, 210 East 24th Street, Austin, Texas 
78712-1221, U.S.A. 

224

http://www.univelt.com/book=5667


AAS 15-794

CIRCUMLUNAR FREE-RETURN CYCLER ORBITS

FOR A MANNED EARTH-MOON SPACE STATION

Anthony L. Genova* and Buzz Aldrin†

Multiple free-return circumlunar cycler orbits were designed to allow regular travel be-
tween the Earth and Moon by a manned space station. The presented cycler orbits contain 
circumlunar free-return “figure-8” segments and yield lunar encounters every month. 

Smaller space “taxi” vehicles can rendezvous with (and depart from) the cycling Earth-
Moon space station to enter lunar orbit (and/or land on the lunar surface), return to Earth, 
or reach destinations including Earth-Moon halo orbits, near-Earth objects (NEOs), and 
Mars. To assess the practicality of the selected orbits, relevant cycler characteristics (in-
cluding ΔV maintenance requirements) are presented and compared. 
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AAS 15-812

CONJUGATE UNSCENTED TRANSFORMATION BASED

COLLOCATION SCHEME TO SOLVE

THE HAMILTON JACOBI BELLMAN EQUATION

Nagavenkat Adurthi,* Puneet Singla† and Manoranjan Majji‡

This paper deals with the development of a computational efficient approach to approxi-
mate the solution to the Hamilton Jacobi Bellman equation. The primary focus is to gen-
erate optimal feedback controllers for nonlinear systems in higher dimensions. Solving 
the Hamilton Jacobi Bellman partial differential equation is known to be a computational-
ly challenging problem due to the curse of dimensionality with the increase in dimension. 
A collocation based approach is adopted, where the collocation points are chosen as the 
recently developed Conjugate Unscented Transform points to avoid the curse of dimen-
sionality. Further a l1-norm based optimization problem is proposed to optimally select 
the basis that is suitable for the given dynamical system. 
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AAS 15-817

PIECEWISE INITIAL LOW THRUST TRAJECTORY DESIGN

Ossama Abdelkhalik* and Shadi Ahmadi Darani†

In this paper the problem of preliminary trajectory design is considered for a transfer from 
a low Earth orbit to a geostationary orbit using low thrust acceleration, assuming no thrust 
during eclipse periods. This problem is challenging for many preliminary trajectory design 
tools due to the very high number of revolutions around Earth and the very low thrust level 
constraint. The approach presented in this paper assumes a profile for the desired change in 
each of the orbit parameters and implements a feedback control to track this profile. In the 
case when the trajectory is near circular, a linear dynamic model can be used in designing 
the controller gains. In this paper, two dynamic models, linear and nonlinear, are consid-
ered and a different controller is designed for each model. By dividing the trajectory into 
small segments, a piecewise orbit change is achieved in both cases. The controller gains are 
tuned at each segment. Case studies are presented. 

[View Full Paper] 

                                                                
* Associate Professor, Mechanical Engineering-Engineering Mechanics Department, Michigan Technological Universi-
ty, 815 R. L. Smith Building, 1400 Townsend Drive, Houghton, Michigan 49931, U.S.A. E-mail: ooabdelk@mtu.edu. 
Senior Member AIAA. 
† Ph.D. Student, Mechanical Engineering-Engineering Mechanics Department, Michigan Technological University,
815 R. L. Smith Building, 1400 Townsend Drive, Houghton, Michigan 49931, U.S.A. E-mail: sahmadid@mtu.edu. 

227

www.univelt.com/book=5490


SPACE MISSIONS: NEW HORIZONS,

MESSENGER, AND MARS 

RECONNAISSANCE ORBITER

228



Session Chairs: 

Bobby Williams, KinetX Inc. 

James McAdams,  
The Johns Hopkins University Applied Physics Laboratory 

The following paper was not available for publication: 

AAS 15-651  Paper Withdrawn 

229



AAS 15-532

MARS RECONNAISSANCE ORBITER NAVIGATION STRATEGY 

FOR DUAL SUPPORT OF INSIGHT AND EXOMARS ENTRY, 

DESCENT AND LANDING DEMONSTRATOR MODULE IN 2016*

Sean V. Wagner,† Premkumar R. Menon,‡

Min-Kun J. Chung§ and Jessica L. Williams**

Mars Reconnaissance Orbiter (MRO) will support NASA’s InSight Mission and ESA’s 

ExoMars Entry, Descent and Landing Demonstrator Module (EDM) in the fall of 2016 
when both landers arrive at Mars. MRO provided relay support during the Entry, Descent 
and Landing (EDL) sequences of the Mars Phoenix Lander in May 2008 and the Mars 
Science Laboratory in August 2012. Unlike these missions, MRO will coordinate be-
tween two EDL events separated by only three weeks: InSight on September 28, 2016 
and EDM on October 19, 2016. This paper describes the MRO Navigation Team’s ma-

neuver strategy to move the spacecraft’s ascending node for InSight EDL support and to 

adjust the orbit timing (phasing) to meet InSight and EDM phasing requirements. 
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AAS 15-551

MARS RECONNAISSANCE ORBITER NAVIGATION STRATEGY 

FOR THE COMET SIDING SPRING ENCOUNTER*

Premkumar R. Menon,† Sean V. Wagner, Tomas J. Martin-Mur, 

David C. Jefferson, Shadan M. Ardalan, Min-Kun J. Chung, 

Kyong J. Lee and William B. Schulze‡

Comet Siding Spring encountered Mars on October 19, 2014 at a distance of about 
140,500 km – the nearest comet flyby of a planet in recorded history. Mars Reconnais-
sance Orbiter (MRO) was able to detect the comet, gather science data, and capture im-
ages of the comet as it approached Mars. To help protect MRO from the incoming comet 
particles, two propulsive maneuvers were performed to position the spacecraft behind 
Mars at the arrival time of the expected peak particle fluency. This paper documents the 
strategy that the MRO Navigation Team executed to mitigate risk from the comet parti-
cles while allowing scientific observations of the comet flyby. 
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AAS 15-608

DESIGN, IMPLEMENTATION, AND OUTCOME OF MESSENGER’S 
TRAJECTORY FROM LAUNCH TO MERCURY IMPACT

Dawn P. Moessner* and James V. McAdams†

MESSENGER launched on 3 August 2004, entered orbit about Mercury on 18 March 
2011 (UTC), and impacted Mercury’s surface on 30 April 2015. After a 6.6-year cruise 
phase with one flyby of Earth, two of Venus, and three of Mercury, MESSENGER spent 
4.1 years in orbit about the innermost planet. Initially in a 12-h orbit, MESSENGER 
maintained periapsis altitudes of 200–505 km before transferring to an 8-h orbit on 20 
April 2012. MESSENGER’s low-altitude campaign included periapsis altitudes between 
15 and 200 km. In its final 44 days, MESSENGER maintained unprecedented minimum 
altitudes less than 38 km above Mercury’s terrain before impact.
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AAS 15-634

ENGINEERING MESSENGER’S GRAND FINALE AT MERCURY –
THE LOW-ALTITUDE HOVER CAMPAIGN

James V. McAdams,* Christopher G. Bryan,† Stewart S. Bushman,‡

Andrew B. Calloway,§ Eric Carranza,** Sarah H. Flanigan,††

Madeline N. Kirk,‡‡ Haje Korth,§§ Dawn P. Moessner,***

Daniel J. O’Shaughnessy††† and Kenneth E. Williams‡‡‡

Having completed its primary and first extended missions by mid-March 2013, the 
MESSENGER spacecraft in orbit about Mercury began a 2.1-year final mission extension 
that brought substantial opportunity for low-altitude science, along with many technical 
challenges successfully overcome by the flight operations and science teams. After four 
orbit-correction maneuvers (OCMs) between June 2014 and January 2015 targeted mini-
mum altitudes near 25 km and 15 km, seven OCMs in March and April 2015 maintained 
minimum altitude between 5 km and 37 km. Engineering challenges at mission end in-
cluded the efficient utilization of accessible propellant and helium gas pressurant to delay 
Mercury impact. 
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AAS 15-636

NAVIGATION STRATEGY AND RESULTS FOR NEW HORIZONS’ 
APPROACH AND FLYBY OF THE PLUTO SYSTEM

B. Williams, F. Pelletier, D. Stanbridge, J. Bauman, K. Williams, C. Jackman, 

D. Nelson, P. Dumont, P. Wolff, C. Bryan, A. Taylor*

and
Y. Guo, G. Rogers, R. Jensen†

and
S. A. Stern,‡ H. A. Weaver,† L. A. Young,‡ K. Ennico§ and C. B. Olkin‡

The New Horizons mission, the first mission in NASA’s New Frontiers Program, is also 

the first mission with primary science objectives to explore the Pluto/Charon system. Af-
ter launch in January 2006 and an interplanetary cruise of more than 9.5 years, New Ho-
rizons has completed the approach and flyby of Pluto. This paper presents an overview of 
the analysis and operational constraints that led to the navigation strategy used. Also pre-
sented are operational results for that strategy during this final phase of the prime mis-
sion.
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AAS 15-652

MESSENGER MANEUVER PERFORMANCE DURING

THE LOW-ALTITUDE HOVER CAMPAIGN

Madeline N. Kirk,* Sarah H. Flanigan,† Daniel J. O’Shaughnessy,‡
Stewart S. Bushman§ and Paul E. Rosendall**

Helium gas pressurant from the MErcury Surface, Space ENvironment, GEochemistry, 
and Ranging (MESSENGER) spacecraft’s near-empty main fuel tanks was used as a pro-
pellant to delay the spacecraft’s surface impact onto Mercury until late April 2015 and 
enabled a one-month “hover” campaign with periapsis altitudes as low as 5 km. The final 

eight maneuvers of the mission had special challenges, including repurposing helium 
pressurant as a propellant, firing thrusters that had not been used in more than eight years, 
and executing multiple maneuvers within a short time frame that, if unsuccessful, would 
have led to impact times as little as 30 hours later. 
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AAS 15-768

NAVIGATION AND DISPERSION ANALYSIS OF

THE FIRST ORION EXPLORATION MISSION

Christopher D’Souza* and Renato Zanetti*

This paper presents the Orion EM-1 Linear Covariance Analysis for the DRO mission. 
The |ΔV|  statistics for each maneuver are presented. In particular, the statistics of the lu-
nar encounters and the Entry Interface are presented. 
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AAS 15-535

A MASSIVELY PARALLEL BAYESIAN APPROACH

TO PLANETARY PROTECTION TRAJECTORY

ANALYSIS AND DESIGN*

Mark S. Wallace†

The NASA Planetary Protection Office has levied a requirement that the upper stage of
future planetary launches have a less than 10-4 chance of impacting Mars within 50 years 
after launch. A brute-force approach requires a decade of computer time to demonstrate 
compliance. By using a Bayesian approach and taking advantage of the demonstrated re-
liability of the upper stage, the required number of fifty-year propagations can be mas-
sively reduced. By spreading the remaining embarrassingly parallel Monte Carlo simula-
tions across multiple computers, compliance can be demonstrated in a reasonable time 
frame. The method used is described here. 
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AAS 15-563

INFRARED-SENSOR MODELING AND GPU SIMULATION OF 

TERMINAL GUIDANCE FOR ASTEROID INTERCEPT MISSIONS

Joshua Lyzhoft,* John Basart† and Bong Wie‡

This paper describes the IR-sensor modeling and simulation problem of a terminal guid-
ance system for asteroid intercept missions. Precision terminal guidance problem of tar-
geting small asteroids (50 to 100 meters in diameter) is investigated in this paper. Signal-
to-noise ratio estimation for visual- and IR-sensors, estimation of their minimum and 
maximum ranges for target detection, and GPU-accelerated simulation of the IR-based 
terminal guidance are discussed. Scaled polyhedron models of known objects, such as the 
Rosetta mission’s Comet 67P/C-G, OSIRISREx’s Bennu, and asteroid 433 Eros, are uti-

lized in developing a GPU-based simulation tool for the IR-based terminal guidance. A 
parallelized ray tracing algorithm for simulating realistic surface-to-surface shadowing of 
a given celestial body is developed. Polyhedron solid-angle approximation is also dis-
cussed. 
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AAS 15-568

A GPU-ACCELERATED COMPUTATIONAL TOOL

FOR ASTEROID DISRUPTION MODELING AND SIMULATION

Ben J. Zimmerman* and Bong Wie†

This paper presents a two-dimensional hydrodynamic simulation tool for studying the 
effectiveness of hypervelocity kinetic-energy impactors (KEIs) and nuclear subsurface 
explosions for disrupting (i.e., dispersively pulverizing) hazardous asteroids. High-order 
methods on GPUs (Graphics Processing Units) are employed for hydrodynamic simula-
tions of such complex physical problems. Because high-order method schemes are com-
pact (many operations per element), they are highly parallelized and are ideal for the ar-
chitecture of GPUs. This paper focuses on the implementation of such numerical methods 
with GPUs as applied to the asteroid disruption problem. Three cases are compared for 
disrupting a reference 2D 100-m asteroid model of a nominal density of 2000 kg/m3.
They are: i) a single, 5000-kg KEI with 10-km/s impact speed, ii) five 1000-kg KEIs in 
parallel, and iii) a 100-kt nuclear subsurface explosion subsequent to a smaller 500-kg 
KEI. 
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AAS 15-587

PARAMAT: PARALLEL PROCESSING WITH

THE GENERAL MISSION ANALYSIS TOOL

Darrel J. Conway*

In 2014, Thinking Systems began work on a threaded, parallel processing tool that incorporates the 
numerical engine from the General Mission Analysis Tool (GMAT) into a system designed to use the 
processing capabilities of modern, multi-core computer platforms. The goal of this work is to build a 
modern, parallel processing mission analysis tool designed to solve computationally intensive analysis 
problems. Examples of the problems targeted by this work are Monte Carlo analysis of spacecraft 
mission parameters, parametric studies of mission design problems, trajectory dispersion analyses, and 
phase space analysis of flight mechanics problems. The tool under development, Paramat, currently 
exists as a proof of concept prototype system. This implementation has been used to show core 
GMAT functionality driving Monte Carlo analyses for orbital transfers. In this paper, the Paramat sys-
tem is described, beginning with a design overview and current feature set of the system, followed by 
walking through a sample analysis problem that demonstrates the performance gains observed in Par-
amat runs. 

GMAT is an open source tool under development at NASA’s Goddard Space Flight Center (GSFC). 

Thinking Systems has been an active participant in GMAT development since the project began in 
2002. The GMAT system architecture was proposed based on design work at Thinking Systems, and 
has been refined throughout the development process to produce a tool which has been released as an 
open source project. In 2013, GMAT was certified for operational use for maneuver planning by the 
Advanced Composition Explorer (ACE) mission in the Flight Dynamics Facility at GSFC. Paramat, 
initially funded through the NASA SBIR/STTR Program, started from a conceptual approach to paral-
lel processing using the GMAT source code. The Paramat system has been built as a proof of concept 
system designed to fully use the computational resources on an analyst’s workstation. Paramat has 

been used to demonstrate performance gains on Linux, Windows, and Mac workstations when per-
forming analysis that requires repeated runs of a spacecraft mission. Linux is the primary development 
platform for Paramat, so the results presented here will focus on the system on Linux hardware. 

To be a viable system, Paramat must demonstrate the same modeling fidelity as is seen in GMAT. 
GMAT has a full suite of test scripts that are run on nightly builds of the system. Paramat uses the 
same scripting language as GMAT, with extensions that support parallel processing problems. Think-
ing Systems has prototyped a continuous build and test system for Paramat. The Paramat test system, 
once complete, will exercise the same set of tests as are run for GMAT, generating results for more 
than 12000 test cases on each run. 

Examples of the performance gains seen in the Paramat system are documented in this paper. The 
primary demonstration mission for this analysis is the Monte Carlo analysis of an orbital transfer prob-
lem that GMAT includes as a sample problem in the public releases of the software. Paramat shows 
performance gains that scale linearly with the hardware capabilities of the workstation running the 
tool, as will be shown in the data presented here. 
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AAS 15-688

GPU-ACCELERATED COMPUTATION OF SRP FORCES

WITH GRAPHICAL ENCODING OF SURFACE NORMALS

Sergei Tanygin* and Gregory M. Beatty†

The forces and torques due to atmospheric drag and solar radiation pressure (SRP) acting 
on complex and articulated space objects are efficiently calculated by utilizing the highly 
parallelized hardware available in commodity desktop PC graphics processing units. The 
calculations are performed by combining traditional OpenGL rendering of 3D models 
with general-purpose computing on graphics processing units (GPGPU) techniques via 
OpenCL. In cases when the forces and torques include contributions that depend on sur-
face normals, their directions are encoded as pseudo-colors which allows OpenCL kernel 
methods to efficiently unpack this additional information and perform the necessary 
computations. By utilizing the highly parallelized processing units available in commodi-
ty GPUs, the time required run the calculations is significantly reduced. 
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AAS 15-735

GPU-BASED UNCUED SURVEILLANCE FROM LEO TO GEO

WITH SMALL OPTICAL TELESCOPES

Peter Zimmer,* John T. McGraw† and Mark R. Ackermann‡

J.T. McGraw and Associates, LLC (JTMA) operates two proof-of-concept wide-field im-
aging systems to test novel techniques for uncued surveillance of LEO/MEO/GEO/HEO 
and, in collaboration with the University of New Mexico (UNM), uses a third small tele-
scope for rapidly queued same-pass follow-up observations. Using our GPU-accelerated 
detection methods, the proof-of-concept systems operating at sites near and within Albu-
querque, NM, have detected objects fainter than V=13 at greater than 6 sigma signifi-
cance moving at apparent rates in excess of 0.75 degrees per second. Dozens of objects 
are measured during each operational twilight period, many of which have no corre-
sponding catalog object. 

The two proof-of-concept systems, separated by 27 km, work together by taking simulta-
neous images of a common volume to constrain the orbits of detected objects using paral-
lax measurements. These detections are followed-up by imaging photometric observa-
tions taken at UNM to confirm and further constrain the initial orbit determination and 
independently assess the objects and verify the quality of the derived orbits. This work 
continues to demonstrate that scalable optical systems designed for real-time detection of 
fast moving objects, which can be then handed off to other instruments capable of track-
ing and characterizing them, can provide valuable real-time surveillance data at LEO and 
beyond, which substantively informs the SSA process. 
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AAS 15-791

PARALLEL GENERATION OF EXTREMAL FIELD MAPS

FOR OPTIMAL MULTI-REVOLUTION CONTINUOUS

THRUST ORBIT TRANSFERS

Robyn M. Woollands,* Julie L. Read,* Brent Macomber,* Austin Probe,*

 Ahmad Bani Younes†‡ and John L. Junkins§

We simulate hybrid thrust transfers to rendezvous with space debris in orbit about the 
Earth. The hybrid thrust transfer consists of a two-impulse maneuver at the terminal 
boundaries, which is augmented with continuous low-thrust that is sustained for the dura-
tion of the flight. This optimal control problem is formulated using the path approxima-
tion numerical integration method, Modified Chebyshev Picard Iteration (MCPI). This 
integration method can be formulated for solving initial and boundary value problems. 
The boundary value problem formulation does not require a shooting method and con-
verges over about 1/3 of an orbit. This interval can be extended to about 95% of an orbit 
with regularization. In order to increase this domain even further, to multiple revolution 
capability, we implement a shooting method known as the Method of Particular Solu-
tions (MPS), and utilize the MCPI initial value problem implementation for integrating 
the state and costate equations. The p-iteration Keplerian Lambert solver is used to pro-
vide an initial guess for solving the optimal control problem. When continuous thrust is 
“turned off”, we find that the solution to the optimal control formulation reduces to the 

two-impulse two-point boundary value problem, with zero thrust coast. For some trans-
fers we observe a reduced terminal ΔV cost for the hybrid thrust relative to the two-
impulse, and for others it may be increased. This depends on the relative orbits and the 
initial phasing of the satellites. Determining the globally optimal sequence of maneuvers 
for retrieving orbital debris can require simulating thousands of feasible transfer trajecto-
ries. We utilize a parallel architecture on our cluster at the LASR Lab (Texas A&M), for 
computing the ΔV cost for each transfer trajectory, and display the results on an extremal 
field map. Both MCPI and MPS afford several layers of parallelization, and taking ad-
vantage of this reduces the computation time by at least an order of magnitude compared 
with the serial implementation.
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AAS 15-793

MASSIVELY PARALLEL IMPLEMENTATION

OF MODIFIED CHEBYSHEV PICARD ITERATION

FOR PERTURBED ORBIT PROPAGATION

Austin Probe,* Julie L. Read,* Brent Macomber† and John L. Junkins‡

Future Space Situational Awareness (SSA) sensing capabilities will greatly increase the 
population of trackable space objects, and consequently, the need for accurate and effi-
cient orbital propagation. The serial formulation of Modified Chebyshev Picard Iteration 
(MCPI) has proven to be an efficient and accurate method for propagating perturbed or-
bital motion; its performance is comparable to other state-of-practice numerical integra-
tors. However, one significant advantage of MCPI is that it is well suited to paralleliza-
tion. Initial efforts to implement MCPI using parallel computation have shown additional 
speedup. This paper details a graphics card based massively parallel implementation of 
perturbed orbit propagation with MCPI. 
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AAS 15-795

EXPERIMENTS WITH JULIA

FOR ASTRODYNAMICS APPLICATIONS

Nitin Arora* and Anastassios Petropoulos†

Julia’s potential for solving complex astrodynamics problems is studied. Julia is a high-
level, new, dynamic programming language with performance approaching C/Fortran and 
has features like inbuilt parallelism, variable accuracy, integrated numerical libraries and 
direct C and Fortran interfaces. Two astrodynamics problems are solved in Julia: 1) Lam-
bert’s problem, using the vercosine formulation and 2) trajectory integration. Implement-

ed algorithms are compared with C and Fortran based counterparts on key performance 
parameters (speed, development effort, etc.). Using Julia for fast and reliable astrodynam-
ics software development is also discussed. 
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AAS 15-808

A NON-LINEAR PARALLEL OPTIMIZATION TOOL (NLPAROPT) 

FOR SOLVING SPACECRAFT TRAJECTORY PROBLEMS

Alexander Ghosh,* Ryne Beeson,† Laura Richardson,‡ Donald Ellison,*

David Carroll§ and Victoria Coverstone**

Modern spacecraft trajectory mission planning regularly involves Non-Linear Program-
ming (NLP) problem formulations. As the problems being posed become more complex, 
scientists have adopted high performance computing methods such as parallel program-
ming to significantly speed up the time-to-solution. Unfortunately, the NLP solvers at the 
core of many of the modern trajectory optimization methods are becoming a serial bottle-
neck, and the single largest point of solution slowdown. 

CU Aerospace in partnership with the University of Illinois at Urbana-Champaign 
(UIUC) has developed a novel, ground-up redesign of an NLP solver that takes advantage 
of high performance parallel computing called the Non-Linear PARallel Optimization 
Tool (NLPAROPT). NLPAROPT uses the Message Passing Interface (MPI) as well as 
Parallel Basic Linear Algebra (PBLAS) techniques to carry out traditional NLP solution 
methods in parallel. Preliminary tests have shown NLPAROPT’s ability to reduce the 

runtime by orders of magnitude when compared to its serial counterpart. Applications to 
simple problems as well as a multiple shooting trajectory optimization test problem are 
demonstrated. There remains significant additional avenues for parallelism and improved 
robustness that should proffer further gains. 
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AAS 15-531

SPATIAL RESOLUTION IN DENSITY PREDICTION FOR

DIFFERENTIAL DRAG MANEUVERING GUIDANCE

David Guglielmo,* David Pérez,† Riccardo Bevilacqua‡ and Leonel Mazal§

Atmospheric differential drag can be used to control the relative motion of multiple co-
planar spacecraft in Low Earth Orbit (LEO), without the use of any propellant, provided 
that they can vary their ballistic coefficients. However, the variability of the atmospheric 
density, and therefore the drag acceleration, makes the generation of accurate drag-based 
guidance a challenging problem. Currently available density models have biased results, 
causing errors in the drag force estimation. In this work a method for predicting the at-
mospheric density along the future orbit of a spacecraft is combined with a calibrator 
used with existing empirical atmospheric models. The combination is used to improve 
differential drag-based relative maneuvering by adding spatial resolution to atmospheric 
density prediction methods. This leads to the creation of more realistic guidance trajecto-
ries for spacecraft relative maneuvering based on differential drag. 
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AAS 15-622

NONLINEAR REDUCED ORDER DYNAMICS OF SPACECRAFT 

RELATIVE MOTION FOR A CIRCULAR CHIEF ORBIT

Eric A. Butcher* and T. Alan Lovell†

Nonlinear reduced order models are obtained for spacecraft relative motion in the case of 
circular chief orbits. First, a nonlinear third order extension of the CWH equations is ob-
tained and a modal transformation is employed that decouples the linear dynamics. Then 
two techniques, linear-based order reduction and the methodology of nonlinear normal 
modes, are employed to obtain nonlinear reduced models corresponding to the three 
modes of the CWH equations. The resulting nonlinear models extend linear modal analy-
sis of the CWH equations to the nonlinear regime valid for larger separation distances 
and allow for a geometric characterization of the nonlinear dynamics of relative motion. 

[View Full Paper] 
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AAS 15-623 

USE OF NONLINEARITIES FOR INCREASED OBSERVABILITY

IN RELATIVE ORBIT ESTIMATION

Jingwei Wang,* Eric A. Butcher† and T. Alan Lovell‡

In this paper, the effects of incorporating nonlinearities in sequential relative orbit estima-
tion are studied for a chief spacecraft in a circular orbit, assuming either range or line-of-
sight measurement of the deputy from the chief. The relative motion models used in an 
extended Kalman filter can be categorized into four cases: first order (HCW equation), 
second order, third order and full nonlinear. Observability is studied analytically using 
Lie derivatives and numerically with the observability index and condition number ob-
tained from employing an extended Kalman filter. The results highlight the improving 
benefits of using higher order nonlinear models. 
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AAS 15-640

ESTABLISHING A FORMATION OF SMALL SATELLITES

IN A LUNAR FLOWER CONSTELLATION

Lauren McManus* and Hanspeter Schaub†

The success of previous lunar science missions can be expanded upon by using a constel-
lation of satellites to increase the lunar surface coverage. A constellation could also serve 
as a communications or GPS network for a lunar human base. Small-sats, deployed from 
a single mothercraft, are proposed to achieve a lunar constellation. The establishment of 
this constellation is investigated where the mothercraft does the primary deployment ma-
neuvers. The constellation lifetime and closed-loop maintenance are addressed. 
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AAS 15-677

BRIDGING DYNAMICAL MODELING EFFORT AND SENSOR ACCURACY 

IN RELATIVE SPACECRAFT NAVIGATION

Kohei Fujimoto,* Kyle T. Alfriend† and Srinivas R. Vadali‡

In current practice, the dynamical model in a spacecraft navigation algorithm is often set 
ad hoc without explicit regard for the level of measurement, guidance, or control errors 
expected. In this paper, we develop methods to quickly survey the trade space between 
navigation system parameters and dynamical model fidelity. We focus our efforts on 
forces that have precise deterministic physical models, e.g., the Earth’s gravity, such that 

modeling errors may be regarded as biases. Our approach simplifies the workflow of de-
signing navigation systems by mitigating the need to conduct a large-scale non-linear 
numerical validation of system performance. 
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AAS 15-705

ANALYTIC SOLUTION FOR SATELLITE RELATIVE MOTION

WITH ZONAL GRAVITY PERTURBATIONS

Bharat Mahajan,* Srinivas R. Vadali† and Kyle T. Alfriend‡

A state transition matrix for satellite relative motion including the effects of the higher-
degree zonal gravity harmonics is presented. This work extends the earlier development 
by Gim and Alfriend which considered only the first-order secular and periodic perturba-
tions due to the second zonal harmonic. Deprit’s Lie-transform based canonical perturba-
tion theory is used to compute secular, short-period, and long-period perturbations in the 
orbital elements. Secular effects up to order three and periodic perturbations up to order 
two due to the zonal harmonics J2 through J6 are incorporated into the solution. The 
methodology presented in this work can be extended to include the second-order secular 
as well as short-period perturbations for the zonal harmonics up to an arbitrary degree. 
The improvement in prediction accuracy of relative motion resulting from each of the 
multiple effects is ascertained by considering projected circular orbit satellite formations. 
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AAS 15-747

LIBRATION POINT ORBIT RENDEZVOUS USING LINEARIZED RELATIVE 

MOTION DYNAMICS AND NONLINEAR DIFFERENTIAL CORRECTION 

Sara Case*

This paper presents a technique for computing a rendezvous trajectory with a target satel-
lite in a libration point orbit. The chaser satellite completes the rendezvous by executing a 
series of impulsive maneuvers to travel between waypoints approaching the target satel-
lite. Linearized equations of relative motion of the chaser with respect to the target in the 
circular restricted three body problem are used to compute the required magnitude and 
direction of the maneuvers; these results are then refined using differential correction 
with the nonlinear equations of motion. The performance of this technique is discussed 
and several rendezvous strategies are evaluated. 
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AAS 15-773

CONTINUOUS-TIME MODELING AND CONTROL

USING LINEARIZED RELATIVE ORBIT ELEMENTS

Trevor Bennett* and Hanspeter Schaub†

Motivated by the breadth of applications for relative orbit control in formation flying and 
proximity operations, a new approach to the time-varying Clohessy-Wiltshire (CW) 
equations is developed. The Lagrangian Brackets variations enable study of invariants in 
the presence of perturbation accelerations. The Lagrangian Brackets are applied to the 
constants in the linear CW equations, called Linearized Relative Orbit Elements or 
LROEs, to provide equations of motion. The geometrical relative motion insights are in-
vestigated when drag perturbations are included. In addition, a LROE feedback control 
law to transition between relative orbits is developed and numerically assessed. The 
manuscript concludes with relative orbit reconfiguration optimization fundamentals and 
discussion of additional work. 
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AAS 15-790

UNIFORM AND WEIGHTED COVERAGE

FOR LARGE LATTICE FLOWER CONSTELLATIONS

Sanghyun Lee,* Martín E. Avendãno† and Daniele Mortari‡

This paper addresses the problem of designing satellite constellations with a large number 
of satellites on circular orbits. As the number of satellite increases the minimum distance 
constraint slows down the optimization process. Using the 2-D Lattice Flower Constella-
tions theory with the constraint of having all satellites in the same relative trajectory in 
any rotating frame (e.g., the Earth) the minimum distance constraint is obtained a priori if
the relative trajectory has no self intersections. The algorithms to obtain this condition 
(no self-intersections) is presented. The design parameters of three different configura-
tions made with 200, 289, and 391 satellites Flower Constellations are presented. The 
coverage of these configurations are shown for specific altitude. These large Lattice 
Flower Constellations are invariant with respect to the orbital altitude (orbital period). 
The constellation coverage performance have been optimized using Genetic Algorithms 
and uniform distribution of points on a sphere. 
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AAS 15-526

NEAR-EARTH ASTEROIDS 2006 RH120 AND 2009 BD: PROXIES

FOR MAXIMALLY ACCESSIBLE OBJECTS?

Brent W. Barbee* and Paul W. Chodas†

NASA’s Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) has 
identified over 1,400 of the approximately 12,800 currently known near-Earth asteroids 
(NEAs) as more astrodynamically accessible, round-trip, than Mars. Hundreds of those 
approximately 1,400 NEAs can be visited round-trip for less change-in-velocity than the 
lunar surface, and dozens can be visited round-trip for less change-in-velocity than low 
lunar orbit. How accessible might the millions of undiscovered NEAs be? We probe that 
question by investigating the hypothesis that NEAs 2006 RH120 and 2009 BD are proxies 
for the most accessible NEAs we would expect to find, and describing possible future 
NEA population model studies. 
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AAS 15-533

ROSETTA: IMAGING TOOLS, PRACTICAL CHALLENGES AND 

EVOLUTION OF OPTICAL NAVIGATION AROUND A COMET

David S. Antal-Wokes* and Francesco Castellini†

One challenge faced by ESA's Rosetta mission was developing a generic method of navi-
gation around an unknown body. The image processing Graphical User Interfaces, or 
GUIs, engaged in continuous optical navigation are examined in this article. GUI-Basic 
addresses the problem of initially defining landmarks and enabling a heuristic reconstruc-
tion of the landmarks and camera. GUI-Fusion enables manual image processing by de-
riving an appropriate subset of images to aid in identifying all visible landmarks. GUI-
Pred is designed for poor imaging conditions, enabling contour-shifting and correcting 
positions accordingly. The subroutines for the selection processes, predictive tools and N-
point correction algorithms are derived and examples given, set in the broader context of 
the cometary phase of the Rosetta mission. 
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AAS 15-546

INDUCED FRAGMENTATION OF ASTEROIDS

DURING CLOSE ENCOUNTERS

Bryan Tester* and Massimiliano Vasile†

We consider the behaviour of rotating binary asteroids as they pass through Earth’s Hill 

sphere, with primary interest in the effect the tidal force on the interaction between the 
two components of the binary and their post-encounter trajectories. We focus on contact 
binary asteroids bound by a regolith bridge, using both direct numerical simulation and 
analytical approaches to investigate the sensitivity of the system to different parameters. 
We find that the system is most sensitive to the angle between the binary pair and the or-
bital path, having a significant impact upon the energy change during a fragmentation 
event. We also give the results of some basic simulations of a deflection attempt on such 
an object. 
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AAS 15-550

PASSIVE VS. PARACHUTE SYSTEM TRADE APPLIED TO

THE MULTI-MISSION EARTH ENTRY VEHICLE CONCEPT

Allen Henning,* Robert Maddock† and Jamshid Samareh‡

The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on 
the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample 
return mission study phase to parametrically investigate any trade space of interest to de-
termine the best design approach for that particular mission concept. In addition to the 
trade space dimensions often considered (e.g. entry conditions, payload size and mass, 
vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial 
for the vehicle to utilize a parachute system during descent/landing or not (i.e. fully pas-
sive). 

In order to evaluate this trade space dimension, a simplified parachute system model, 
based on inputs such as vehicle size/mass, the payload size/mass and the landing re-
quirements, has been developed. This model is then used in conjunction with analytical 
approximations of a mission trade space dataset provided by the MMEEV System Analy-
sis for Planetary EDL (M-SAPE) trade space tool, to help quantify the differences be-
tween a passive and an active (with parachute) vehicle concept. 

Preliminary results over a range of EEV vehicle and mission constraints (including entry 
conditions, vehicle size, payload mass, and landing requirement) are provided. For most 
sample return missions, this latter constraint (landing velocity and/or load) is ultimately 
determined by science considerations (e.g. sample preservation or containment). Regions 
of the trade space where including a parachute system is clearly more beneficial versus 
those where a passive vehicle clearly provides a more mass efficient approach, are identi-
fied. Where the choice between the two architectures may be less clear, additional con-
siderations, including factors such as overall system reliability; system risk and complexi-
ty; and development and testing costs, must also be taken in account. 
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AAS 15-553

TOWING ASTEROIDS WITH GRAVITY TRACTORS ENHANCED

BY TETHERS AND SOLAR SAILS

Haijun Shen* and Carlos M. Roithmayr†

Material collected from an asteroid’s surface can be used to increase gravitational attrac-

tion between the asteroid and a Gravity Tractor (GT); the spacecraft therefore operates 
more effectively and is referred to as an Enhanced Gravity Tractor (EGT). The use of 
tethers and solar sails to further improve effectiveness and simplify operations is investi-
gated. By employing a tether, the asteroidal material can be placed close to the asteroid 
while the spacecraft is stationed farther away, resulting in a better safety margin and im-
proved thruster efficiency. A solar sail on a spacecraft can naturally provide radial offset 
and inter-spacecraft separation required for multiple EGTs. 

[View Full Paper] 

                                                                
* Analytical Mechanics Associates, Inc., 21 Enterprise Parkway, Suite 300, Hampton, Virginia 23666, U.S.A. E-mail: 
shen@ama-inc.com. Tel. (757) 865-0000. 
† NASA Langley Research Center, Vehicle Analysis Branch, MS 451, 1 North Dryden Street, Hampton, Virginia 
23681, U.S.A. E-mail: carlos.m.roithmayr@nasa.gov. Tel. (757) 864-6778. 

266

http://www.univelt.com/book=5521


AAS 15-564

PLANETARY DEFENSE MISSION APPLICATIONS

OF HEAVY-LIFT LAUNCH VEHICLES

George Vardaxis* and Bong Wie†

This paper expands the previously established capabilities of the Asteroid Mission De-
sign Software Tool (AMiDST) to include launch vehicles currently under development 
by SpaceX and NASA, in addition to the Delta II, Delta IV, and Atlas V class launch ve-
hicles, for its planetary defense mission applications. A fictional asteroid, designated 
2015 PDC, is used as a reference target asteroid to further demonstrate the effectiveness 
and applicability of the AMiDST for planetary defense mission design and planning. 
During the 2015 IAA Planetary Defense Conference, the asteroid 2015 PDC was used for 
an exercise where participants simulated the decision-making process for developing de-
flection and civil defense responses to a hypothetical asteroid threat. The planetary de-
fense missions considered in this paper are primarily focused on short-warning time sce-
narios (90 days, 60 days, and 30 days) where a very large (5,000 to 10,000 kg) space sys-
tem would be launched using heavy-lift launch vehicles such as Delta IV Heavy, Falcon 
Heavy, or the SLS, to intercept and disrupt the oncoming target asteroid. 
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AAS 15-565

SENSITIVITY ANALYSIS OF THE OSIRIS-REX TERMINATOR 

ORBITS TO RANDOM DE-SAT MANEUVERS

Siamak G. Hesar,* Daniel J. Scheeres† and Jay W. McMahon‡

OSIRIS-REx is NASA’s asteroid sample return mission and is aimed for launch in the 

year 2016 to the asteroid 1999 RQ36. The nominal orbit that is considered for the science 
phase of the mission is a sun-terminator circular orbit. Sun-terminator orbits are quasi-
stable orbits in a solar radiation pressure dominated environment. However, due to highly 
non-Keplerian dynamics that exist in such an environment, small perturbations can lead 
to large deviations from the nominal trajectory. Such perturbations arise from errors in 
de-saturation maneuvers. In this study we analyze the sensitivity of the terminator orbits 
to the maneuver execution errors and their uncertainties. 
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AAS 15-567

A NEW NON-NUCLEAR MKIV (MULTIPLE KINETIC-ENERGY 

IMPACTOR VEHICLE) MISSION CONCEPT FOR DISPERSIVELY 

PULVERIZING SMALL ASTEROIDS

B. Wie,* B. Zimmerman,† P. Premaratne,† J. Lyzhoft† and G. Vardaxis‡

This paper presents the initial preliminary study results for a new non-nuclear MKIV 
(Multiple Kinetic-Energy Impactor Vehicle) system that can dispersively pulverize small 
asteroids (< 150 m) detected with short mission lead times (< 10 years). The proposed 
MKIV system with its total mass in the range of approximately 5,000 to 15,000 kg can be 
launched from a single large booster such as Delta IV Heavy, Falcon Heavy or the SLS. 
Its baseline architecture is comprised of a carrier vehicle (CV) and a number of attached 
kinetic-energy impactors (KEIs). Near to a target asteroid, the CV will dispense several 
KEIs and guide them to hit near-simultaneously different locations widely distributed 
across the target surface area and to cause shock waves to propagate more effectively 
through the target body. In this paper, a simplified 2D hydrocode simulation model is in-
vestigated using both an in-house GPU-accelerated hydrocode and ANSYS AUTODYN 
commercial software. A multi-target terminal guidance problem and a planetary defense 
mission design employing heavy-lift launch vehicles are also briefly discussed in support 
of the MKIV mission concept. 
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AAS 15-619

ORGANIZING BALLISTIC ORBIT CLASSES

AROUND SMALL BODIES

Benjamin F. Villac,* Rodney L. Anderson† and Alex J. Pini‡

Orbital dynamics around small bodies are as varied as the shape and dynamical states of 
these bodies. While various classes of orbits have been analyzed in detail, the global 
overview of relevant ballistic orbits at particular bodies is not easily computed or orga-
nized. Yet, correctly categorizing these orbits will ease their future use in the overall tra-
jectory design process. This paper overviews methods that have been used to organize 
orbits, focusing on periodic orbits in particular, and introduces new methods based on 
clustering approaches. 
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AAS 15-642

SHAPE DEPENDENCE OF KINETIC DEFLECTION

FOR A SURVEY OF REAL ASTEROIDS

Juliana D. Feldhacker,* Brandon A. Jones,† Alireza Doostan,‡

Daniel J. Scheeres§ and Jay W. McMahon†

The transfer of momentum to an asteroid via kinetic impactor for the purpose of deflec-
tion is a stochastic system in which uncertainties are mapped into the effective change in 
velocity resulting on the asteroid. Additional variation in the imparted velocity is caused 
by the local topography of the asteroid body. This paper considers uncertainties in the 
impact location, asteroid shape model, and asteroid material properties for a survey of 
real asteroid shapes to determine the effect of asteroid topography on kinetic deflection. 
Several analytical models are introduced, which can significantly improve tractability in 
the analysis, and the Sobol’ sensitivity indices are presented as a means of quantifying 

the dependence of the uncertainty in the imparted velocity on the uncertainties in the sys-
tem inputs. 
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AAS 15-655

A POLYHEDRAL-POTENTIAL APPROACH

FOR EDUCATIONAL SIMULATIONS OF SPACECRAFT IN ORBIT 

ABOUT COMET 67P/CHURYUMOV-GERASIMENKO

Jason M. Pearl* and Darren L. Hitt†

The European Space Agency’s Rosetta Mission to comet 67P/Churyumov-Gerasimenko 
(67P/CG) has provided a wealth of detailed, 3-D topological data enabling the recon-
struction a digital version of the body. Using this information, a discrete ‘polyhedra po-
tential’ approach has been taken to develop an a computational testbed for students in ad-

vanced astrodynamics courses to examine the irregular 3-D potential field of 67P/CG and 
the corresponding motion of a spacecraft in its orbit. These computational activities pro-
vide students with a valuable experience in appreciating the complexities associated with 
actual mission trajectory planning in stark contrast to idealized two-body models. 
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AAS 15-659

CONTACTLESS ION BEAM ASTEROID DESPINNING

Claudio Bombardelli,* Daniel Pastor-Moreno† and Hodei Urrutxua‡

The paper analyzes the performance of an ion beam shepherd (IBS) spacecraft as a con-
tactless actuator to modify the rotational state of an asteroid. The beam is pointed towards 
the asteroid with a properly controlled offset distance that maximizes the torque transmit-
ted to the celestial body. Analytical and numerical tools are employed to evaluate the 
despin performance of the method for asteroids of various shapes and sizes. A simple 
control strategy to minimize the residual tumbling motion at the end of the despin ma-
neuver is proposed. Results show that the method can be effectively used to despin aster-
oids of less than 20-30 m diameter in a reasonable time span. In addition, we show that 
the despinning strategy can be applied to larger, Itokawa-size asteroids in order to obtain 
a tiny measurable modification of their spin rate as a possible low-cost demonstration of 
contactless ion beam momentum transfer to a space object. 
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AAS 15-665

TETHERED GRAVITY ASSISTED MANEUVERS IN CLOSE

APPROACH ASTEROIDS TO ACCELERATE A SPACECRAFT

Antonio F. B. A. Prado*

The goal of the present paper is to study the problem of sending a spacecraft to the exte-
rior planets of the Solar System, or even beyond, using a Tethered Sling Shot Maneuver 
(TSSM) in one of the asteroids that passes close to the Earth. In this type of maneuver the 
rotation of the spacecraft around the asteroid is made by a tether linking the spacecraft 
and the asteroid. This type of maneuver can give variations of energy much larger than 
the ones that come from the gravity assisted maneuvers and, in most cases, this variation 
of energy is enough to send the spacecraft outside the Solar System. The key element for 
this maneuver is the velocity of the asteroid around the Sun, because the variation of en-
ergy obtained from this maneuver is proportional to this variable. This procedure may 
become a new form to send spacecrafts away from the orbit of the Earth and have a good 
potential to generate large savings in fuel expenditure. The ideas presented here are par-
ticularly interesting when applied to small satellites, that is a concept that will be used to 
study the Solar System in the future, because their small masses reduces the requirements 
related to the strength of the tether. It is also suggested the use of a permanent tether 
linked to the asteroid, as a form to facilitate the practical aspects of anchoring the tether 
to the asteroid. 
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AAS 15-667

ON THE PROJECTION OF COVARIANCE ELLIPSOIDS

ON NON-PLANAR SURFACES

Jay W. McMahon,* Nicola Baresi† and Daniel J. Scheeres‡

This paper presents a methodology for projecting a covariance ellipsoid onto a non-planar 
surface. In particular, this methodology is useful for determining the statistics of where a 
spacecraft will land on a small body. Given the high curvature of small bodies, the result-
ing landing ellipse will be non-Gaussian and non-planar itself, making this projection 
process a challenging endeavor. We show that the landing ellipse can be computed using 
our methodology in an order of magnitude less time than a typical Monte Carlo analysis, 
with a close reproduction of the resulting statistics. 
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AAS 15-669

OPTIMIZING SMALL BODY GRAVITY FIELD ESTIMATION

OVER SHORT ARCS

Jay W. McMahon,* Daniel J. Scheeres,†

Davide Farnocchia‡ and Steven R. Chesley‡

This paper examines the factors that influence the accuracy to which the gravity field of a 
small near-Earth asteroid can be estimated based on only a short period of time for dedi-
cated radio science data collection. This is a difficult problem for a number of reasons, 
including the fact that the gravity field is very weak, the non-gravitational perturbations 
are relatively more significant, and time and measurement quantity are limited by mission 
constraints. Therefore it is key that the radio science experiment is designed to be as effi-
cient as possible at obtaining information about the gravity field of the asteroid. The key 
focus in this analysis is on the orbit size/shape, the measurement quantity, and placement. 
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AAS 15-690

ORBIT STABILITY OF OSIRIS-REX IN THE VICINITY OF BENNU 

USING A HIGH-FIDELITY SOLAR RADIATION MODEL

Trevor W. Williams,* Kyle M. Hughes,†

Alinda K. Mashiku‡ and James M. Longuski§

Solar radiation pressure is one of the largest perturbing forces on the OSIRIS-Rex trajec-
tory as it orbits the asteroid Bennu. In this work, we investigate how forces due to solar 
radiation perturb the OSIRIS-REx trajectory in a high-fidelity model. The model ac-
counts for Bennu’s non-spherical gravity field, third-body gravity forces from the Sun 
and Jupiter, as well as solar radiation forces acting on a simplified spacecraft model. Such 
high-fidelity simulations indicate significant solar radiation pressure perturbations from 
the nominal orbit. Modifications to the initial design of the nominal orbit are found using 
a variation of parameters approach that reduce the perturbation in eccentricity by a factor 
of one-half. 

[View Full Paper] 

                                                                
* Aerospace Engineer, Navigation and Mission Design Branch, NASA Goddard Space Flight Center, 8800 Greenbelt 
Road, Greenbelt, Maryland 20771, U.S.A. E-mail: trevor.w.williams@nasa.gov. AIAA Associate Fellow. 
† Doctoral Candidate, School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Avenue, West 
Lafayette, Indiana 47907, U.S.A. E-mail: kylehughes@purdue.edu. AIAA Student Member. 
‡ Aerospace Engineer, Navigation and Mission Design Branch, NASA Goddard Space Flight Center, 8800 Greenbelt 
Road, Greenbelt, Maryland 20771, U.S.A. E-mail: alinda.k.mashiku@nasa.gov. 
§ Professor, School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Avenue, West Lafayette, 
Indiana 47907, U.S.A. E-mail: longuski@purdue.edu. AAS Member, AIAA Associate Fellow. 

277

http://www.univelt.com/book=5532


AAS 15-739

THE EUROPEAN ASTEROID IMPACT MISSION:

PHASE A DESIGN AND MISSION ANALYSIS

Fabio Ferrari,* Michèle Lavagna,† Marc Scheper,‡

Bastian Burmann‡ and Ian Carnelli§

AIM is part of a joint collaboration with NASA in the AIDA (Asteroid Impact & Deflec-
tion Assessment) mission. The primary goal of AIDA is to assess the feasibility of de-
flecting the heliocentric path of a Near Earth Asteroid (NEA) binary system, by impact-
ing on the surface of the smaller secondary asteroid of the couple. The work here present-
ed is part of the phase A study, currently performed by OHB System AG, Politecnico di 
Milano and Spin.Works under the European Space Agency study for phase A/B1. The 
paper focuses on the mission analysis of AIM spacecraft during the main phases of the 
mission: interplanetary transfer, rendezvous with the asteroid and close proximity opera-
tions. 
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AAS 15-528

EXAMINATION OF POTENTIAL SOURCES

OF SMALL HIGH DENSITY PARTICLES IN EARTH ORBIT

Glenn E. Peterson,* Alan B. Jenkin† and Marlon E. Sorge‡

Evidence of high-density man-made steel particles has been observed in returned Shuttle 
radiators and windows. However, the true physical sources of these particles have not 
been conclusively identified. This paper examines potential sources (surface degradation 
of orbiting intact objects, and historical explosions) and their consequences for long-term 
modeling. It was found that few intact objects have stainless steel surfaces with implica-
tions for any surface degradation model, and, if explosions are a source, then the small 
particles should have decayed out of the environment by the present time. 
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AAS 15-534

CONTAINMENT OF MODERATE-ECCENTRICITY BREAKUP

DEBRIS CLOUDS WITHIN A MAXIMUM ISOTROPIC

SPREADING SPEED BOUNDARY

Brian W. Hansen* and Felix R. Hoots†

Following the energetic breakup of a satellite, it is important to determine if any other 
satellites will be at risk from the resulting debris cloud. One method for assessing this 
risk involves the determination of times when a satellite flies within the boundary of the 
debris cloud. This analysis seeks to prove that a certain set of boundary fragments will 
form a surface that continues to contain the interior fragments of a moderate-eccentricity 
debris cloud evolving over time. Thus, if a satellite is not inside this surface, it will not be 
at risk from any other debris fragments. 
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AAS 15-545

COMPARISON OF NON-INTRUSIVE APPROACHES

TO UNCERTAINTY PROPAGATION IN ORBITAL MECHANICS

Chiara Tardioli,* Martin Kubicek,* Massimiliano Vasile,†

Edmondo Minisci‡ and Annalisa Riccardi§

The paper presents four different non-intrusive approaches to the propagation of uncer-
tainty in orbital dynamics with particular application to space debris orbit analysis. Intru-
sive approaches are generally understood as those methods that require a modification of 
the original problem by introducing a new algebra or by directly embedding high-order 
polynomial expansions of the uncertain quantities in the governing equations. Non-
intrusive approaches are instead based on a polynomial representations built on sparse 
samples of the system response to the uncertain quantities. The paper will present a 
standard Polynomial Chaos Expansion, an Uncertain Quantification-High Dimensional 
Model Representation, a Generalised Kriging model and an expansion with Tchebycheff 
polynomials on sparse grids. The work will assess the computational cost and the suita-
bility of these methods to propagate different type of orbits. 
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AAS 15-557

DEBRIS RE-ENTRY MODELING USING HIGH DIMENSIONAL 

DERIVATIVE BASED UNCERTAINTY QUANTIFICATION

Piyush M. Mehta,* Martin Kubicek,†

Edmondo Minisci‡ and Massimiliano Vasile§

Well-known tools developed for satellite and debris re-entry perform break-up and trajec-
tory simulations in a deterministic sense and do not perform any uncertainty treatment. In 
this paper, we present work towards implementing uncertainty treatment into a Free Open 
Source Tool for Re-entry of Asteroids and Space Debris (FOSTRAD). The uncertainty 
treatment in this work is limited to aerodynamic trajectory simulation. Results for the ef-
fect of uncertain parameters on trajectory simulation of a simple spherical object is pre-
sented. The work uses a novel uncertainty quantification approach based on a new deriva-
tion of the high dimensional model representation method. Both aleatoric and epistemic 
uncertainties are considered in this work. Uncertain atmospheric parameters considered 
include density, temperature, composition, and free-stream air heat capacity. Uncertain 
model parameters considered include object flight path angle, object speed, object mass, 
and direction angle. Drag is the only aerodynamic force considered in the planar re-entry 
problem. Results indicate that for initial conditions corresponding to re-entry from a cir-
cular orbit, the probabilistic distributions for the impact location are far from the typically 
used Gaussian or ellipsoids and the high probability impact location along the longitudi-
nal direction can be spread over ~2000 km, while the overall distribution can be spread 
over ~4000 km. High probability impact location along the lateral direction can be spread 
over ~400 km. 
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AAS 15-584

PETASCALE DISCOVERY OF PASSIVELY CONTROLLED

SATELLITE CONSTELLATIONS FOR GLOBAL COVERAGE

William R. Whittecar,* Marc D. DiPrinzio,† Lake A. Singh,*

Matthew P. Ferringer‡ and Patrick Reed§

Satellite mission designers have long sought solutions to the global coverage problem 
using a minimum number of vehicles. Draim designed a four-satellite constellation with 
elliptical orbits that continuously covers the globe, but orbit perturbations can degrade
coverage up to 32% over eight years without significant stationkeeping. This study com-
bines high-fidelity orbit propagation and coverage analysis with many-objective evolu-
tionary algorithms to explore the design space of four-satellite constellations, seeking al-
ternatives to Draim’s design that maintain continuous coverage with minimal propellant. 

Also leveraging massively parallel computing and advanced visual analytics, we have 
discovered families of sustainable, passively controlled constellations that provide near-
continuous worldwide coverage. 
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AAS 15-586

TRENDING IN PROBABILITY OF COLLISION MEASUREMENTS

J. J. Vallejo,* M. D. Hejduk† and J. D. Stamey‡

A simple model is proposed to predict the behavior of Probabilities of Collision (Pc) for 
conjunction events. The model attempts to predict the location and magnitude of the peak 
Pc value for an event by assuming the progression of Pc values can be modeled to first 
order by a downward-opening parabola. To incorporate prior information from a large 
database of past conjunctions, the Bayes paradigm is utilized; and the operating charac-
teristics of the model are established through a large simulation study. Though the model 
is simple, it performs well in predicting the temporal location of the peak (Pc) and thus 
shows promise as a decision aid in operational conjunction assessment risk analysis. 
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AAS 15-602

POSTERIOR DISTRIBUTION OF AN ORBITAL ENSEMBLE

FROM POSITION-ONLY OBSERVATIONS

Liam Healy* and Christopher Binz*

Unassociated partial-state observations of orbits can provide probabilistic information on 
the earth orbital environment. A probability density function (pdf) of orbits may be con-
structed from position-only observations by assuming that velocities are all equally pos-
sible subject only to physical constraints. The eccentricity vector can be computed; com-
bined with previously-presented results for other elements, this can be used to derive the 
pdf over a complete set of state variables. Unassociated position observations from an 
ensemble of orbits provide a joint pdf by orbital element. The location of sensors and the 
distribution of orbits affect the quality and utility of the results. 
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AAS 15-631

MANEUVER DETECTION WITH EVENT REPRESENTATION

USING THRUST-FOURIER-COEFFICIENTS

Hyun Chul Ko* and Daniel J. Scheeres†

A systematic way of detecting unknown maneuvers is developed by representing an un-
known acceleration tied to an event with Thrust-Fourier-coefficients. Event representa-
tion using Thrust-Fourier-coefficients can rigorously represent an unknown maneuver by 
generating an equivalent maneuver with the same secular behavior. By appending 14 
Thrust-Fourier-coefficients as solve-for states, the modified sequential filter processes 
observation data both forwards and backwards in time to detect maneuver onset and ter-
mination time respectively. Along with the represented perturbing acceleration, the detec-
tion algorithm provides more accurate post-maneuver orbit solutions. A case study of de-
tecting unknown maneuvers with different types of simulated measurement data verifies 
the presented approach. 
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AAS 15-635

NOISE QUANTIFICATION IN OPTICAL OBSERVATIONS OF 

RESIDENT SPACE OBJECTS FOR PROBABILITY

OF DETECTION AND LIKELIHOOD

François Sanson* and Carolin Frueh†

Charged Couple Device (CCD) technology is widely used in the observation of resident 
space objects. Even though CCD technology has dramatically improved since the seven-
ties, satellite and star observation is degraded by inevitable noise generation. Successful 
attempts to estimate the Signal to Noise ratio have been carried out by Newberry and 
Merline et al. but the recent needs for high precision and reliable observations in satellite 
tracking lead us to look for improvements in the pre-existing CCD equations. This study 
aims at critically inspecting the hypotheses used to derive the CCD equation to provide a 
rigorous derivation of it and comparing the CCD equation to computer run simulations of 
CCDs. In a second step the expression for the probability of detection is investigated. 
Subsequently a closed form expression for the object position uncertainty is derived for 
the use in multi-target tracking algorithms. 
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AAS 15-697

REGULARISED METHODS

FOR HIGH-EFFICIENCY PROPAGATION

Jacco Geul,* Erwin Mooij† and Ron Noomen‡

Although regularised propagation methods have a good performance (accuracy versus 
evaluations), they suffer from a number of practical difficulties, such as propagation to a 
fixed time, making them ill-suited for practical applications. Several methods that address 
these limitations are proposed, thoroughly discussed, and analysed on diverse test cases. 
Dromo outperforms the conventional propagation methods significantly. It is shown that 
regularised methods, through some adaptations, can be successfully applied to different 
orbit problems. The proposed method is recommended especially for computationally 
demanding problems. 
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AAS 15-536

USING IN-FLIGHT NAVIGATION INFORMATION

TO CREATE A DEFINED 3-D FORMATION

OF TWENTY-FOUR DEPLOYED SUB-PAYLOADS*

Ernest L. Bowden,† Charles G. Kupelian† and Brian R. Tibbetts‡

The C-REX (Cusp Region EXperiment) sounding rocket mission launched November 
24th, 2014, successfully demonstrating a new technique for deploying and releasing a 
formation of trackable chemicals in a defined 3-dimensional spatial grid comprised of 
twenty-four sub-payloads. This paper describes the new systems required to create this 3-
D formation of sub-payloads in the face of the large trajectory dispersions associated with 
high altitude sounding rockets and achieve adequate separation within the short 12 mi-
nute total flight time. Preliminary results from the C-REX mission show separations of 
upwards of 40km from the main body, with the formation of sub-payloads being success-
fully implemented. 
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AAS 15-576

OBSERVABILITY OF SPACE DEBRIS OBJECTS

Carolin Frueh*

In the standard observation of space debris, only a subset of the state (position and veloci-
ty) is available in every single observation, e.g. via ground based telescopes or radars. 
Even if the full state can be sufficiently estimated from multiple observations the infor-
mation is not sufficient to predict all the non-conservative accelerations acting on that 
object, because they are body dependent (on such as shape, attitude and surface proper-
ties e.g.) rather than simply state dependent. Those accelerations however influence the 
future state, depending on the object properties, to a larger or lesser extent. However, on-
ly the effect of the superposition of all those influences can be measured. Different mod-
els can be chosen to simulate these properties. Characterization measurements can give 
insight into those properties measuring not the astrometric position but the reflected light 
for example. But these measurements are created by a different superposition of the ef-
fects. This paper investigates the observability of all parameters that influence the object 
dynamics, in order to aid the object propagation and characterization. A redefinition of 
the measurement function and subsequently the observability is proposed in order to in-
corporate measurement noise in the observability considerations. It is shown that the 
measurement noise not only is a carrier of information; observability considerations with 
measurement noise allow to increase observability based on sensor characteristics. 
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AAS 15-617

DISTRIBUTED COMPUTATION

FOR NEAR REAL-TIME FOOTPRINT GENERATION

Christopher B. McGrath,* Mark Karpenko† and Ronald J. Proulx‡

It is computationally expensive to generate landing footprints for reentry vehicles. Tech-
niques that utilize parallel computation can therefore significantly decrease computation 
time. Distributed computing techniques can be used to calculate an entire footprint in al-
most the same time that it takes a serial method to generate a single footprint point. The 
resulting speedup is a significant step towards real-time footprint generation. This paper 
describes two different parallel implementations of a psuedospectral optimal control 
solver and analyzes the footprint generation speedup achieved by both program architec-
tures. 
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AAS 15-630

ANALYSIS OF HYPER-PSEUDOSPECTRAL TRANSFORMATION 

OF RANDOM VARIABLES

Paul J. Frontera,* Ronald J. Proulx,† Mark Karpenko‡ and I. Michael Ross§

Accurate transformation of random variables is required for many estimation algorithms 
with applications including guidance, navigation, and control (GNC). While the linear 
transformation of random variables is well understood, nonlinear transformations remain 
challenging as analytic solutions frequently do not exist and numerical techniques must 
be employed. Existing approximation methods for nonlinear transformations include lin-
earization, Monte Carlo analysis using a sufficiently large number of samples, and nu-
merical integration using the Unscented Transform. This paper analyzes performance of 
the Unscented Transform using hyper-pseudospectral points (HS points) compared to ex-
isting methods for the nonlinear transformation of random variables. 
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AAS 15-709

COLLISION AND RE-ENTRY ANALYSIS

UNDER ALEATORY AND EPISTEMIC UNCERTAINTY

Chiara Tardioli* and Massimiliano Vasile†

This paper presents an approach to the design of optimal collision avoidance and re-entry 
maneuvers considering different types of uncertainty in initial conditions and model pa-
rameters. The uncertainty is propagated through the dynamics, with a non-intrusive ap-
proach, based on multivariate Tchebycheff series, to form a polynomial representation of 
the final states. The collision probability, in the cases of precise and imprecise probability 
measures, is computed considering the intersection between the uncertainty region of the 
end states of the spacecraft and a reference sphere. The re-entry probability, instead, is 
computed considering the intersection between the uncertainty region of the end states of 
the spacecraft and the atmosphere. 

[View Full Paper] 
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AAS 15-740

A UKF-PF BASED HYBRID ESTIMATION SCHEME

FOR SPACE OBJECT TRACKING

Dilshad Raihan A.V* and Suman Chakravorty†

Optimal and consistent estimation of the state of space objects is pivotal to surveillance 
and tracking applications. However, the performance of sequential probabilistic inference 
algorithms in space systems is restricted by non-Gaussianity and nonlinearity associated 
with orbital mechanics. In this paper, we present a UKF-PF based hybrid filtering frame-
work for recursive Bayesian estimation of space objects. The proposed estimation scheme 
is designed to provide accurate and consistent estimates when measurements are sparse 
without incurring a large computational cost. It employs an unscented Kalman filter 
(UKF) for estimation when measurements are available. When the target is outside the 
field of view (FOV) of the sensor, the state probability density function (PDF) is updated 
via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle 
depletion through a suitably designed transition scheme. Multiple variants of the hybrid 
filter are considered by modifying the PF-UKF transition. The hybrid filters are em-
ployed in three test cases in which a full three dimensional orbital motion model is con-
sidered by including the effects of J2 and atmospheric drag perturbations. It is demon-
strated that the hybrid filters can furnish fast, accurate and consistent estimates outper-
forming standard UKF and particle filter (PF) implementations. 

[View Full Paper] 
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AAS 15-745

A RANDOMIZED SAMPLING BASED APPROACH

TO MULTI-OBJECT TRACKING WITH COMPARISON TO HOMHT

Weston Faber,* Suman Chakravorty† and Islam I. Hussein‡

In this paper, we present a comparison between our recently published randomized ver-
sion of the finite set statistics (FISST) Bayesian recursions for multi-object tracking with 
the commonly known Hypothesis Oriented Multiple Hypothesis Tracking (HOMHT) 
method. We start by revisiting our hypothesis level derivation of the FISST equations in 
order to appropriately introduce our randomized method, termed randomized FISST 
(RFISST). In this randomized method, we forgo the burden of having to exhaustively 
generate all possible data association hypotheses by implementing a Markov Chain Mon-
te Carlo (MCMC) approach. This allows us to keep the problem computationally tracta-
ble. We illustrate the comparison by applying both methods to a space situational aware-
ness (SSA) problem and show that as the number of objects and/or measurement returns 
increases, as does the computational burden. We then show that the RFISST methodolo-
gy allows for accurate tracking information far beyond the limitations of HOMHT. 

[View Full Paper] 
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AAS 15-769

SINGULAR MANEUVERS IN ANGLES-ONLY

INITIAL RELATIVE-ORBIT DETERMINATION

Laura M. Hebert,* Andrew J. Sinclair† and T. Alan Lovell‡

A maneuver performed by either the chief or deputy spacecraft can provide observability 
in relative-orbit determination using angles-only measurements and linear, Cartesian dy-
namics model. This paper, however, presents solutions for maneuvers that result in singu-
lar measurement equations and therefore do not provide full-state observability. The sin-
gular maneuvers produce changes in the relative position that are proportional to the ex-
pected line of sight, and thus produce no changes in the measurements. Additionally, the 
solution covariance and bias in the presence of noisy measurements is analyzed. This 
analysis provides insight into desirable maneuvers that improve the accuracy of the initial 
relative-orbit determination. 

[View Full Paper] 
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AAS 15-520

RENDEZVOUS VIA DIFFERENTIAL DRAG

WITH UNCERTAINTIES IN THE DRAG MODEL

Leonel Mazal,* David Pérez,† Riccardo Bevilacqua‡ and Fabio Curti§

At Low Earth Orbits a differential in the drag acceleration between coplanar spacecraft 
can be used for controlling their relative motion in the orbital plane. Current methods for 
determining the drag acceleration may result in errors due to the inaccuracy of density 
models and misrepresentation of the drag coefficient. In this work a novel methodology 
for relative maneuvering of spacecraft under bounded uncertainties in the drag accelera-
tion is developed. In order to vary the relative drag acceleration, the satellites modify 
their pitch angle. Two approaches are proposed. First, a dynamical model composed of 
the mean semi-major axis and argument of latitude is utilized for describing long range 
maneuvers. For this model, a Linear Quadratic Regulator (LQR) is implemented, ac-
counting for the uncertainties in the drag force. This controller guarantees asymptotic 
stability of the system up to a certain magnitude of the state vector, which is determined 
by the uncertainties. Furthermore, based on a cartesian relative motion formulation, a 
min-max control law is designed for short range maneuvers. This provides asymptotic 
stability under bounded uncertainties. The two approaches are tested in numerical simula-
tions illustrating a long range re-phasing, performed using the LQR controller, followed 
by a short range rendezvous maneuver, accomplished using the min-max controller. 

[View Full Paper] 

                                                                
* Postdoctoral Associate, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, 
Florida 32611, U.S.A. E-mail: leo.mazal@ufl.edu. 
† Postdoctoral Associate, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, 
Florida 32611, U.S.A. E-mail: perezd4@ufl.edu. 
‡ Associate Professor, Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Flori-
da 32611, U.S.A. E-mail: bevilr@ufl.edu. 
§ Associate Professor, School of Aerospace Engineering, University of Rome “La Sapienza”, 00138 Rome, Italy.  
E-mail: fabio.curti@uniroma1.it. 

303

http://www.univelt.com/book=5552


AAS 15-741

DRAG COEFFICIENTS AND NEUTRAL DENSITY ESTIMATION 

FOR THE ANDE SATELLITES

Craig A. McLaughlin,* Harold Flanagan† and Travis F. Lechtenberg‡

The drag coefficients for the spherical Atmospheric Neutral Density Experiment (ANDE) 
satellites are calculated using different theories and assumptions to characterize the pos-
sible variations. Drag coefficients vary with altitude, solar activity, accommodation, and 
other factors. Satellite laser ranging data are used as observations in a precision orbit de-
termination scheme to estimate density along the ANDE satellite orbits. The effects of 
using different drag coefficients on the estimated density are examined. 

[View Full Paper] 
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AAS 15-748

ANALYTICAL ASSESSMENT OF DRAG-MODULATION 

TRAJECTORY CONTROL FOR PLANETARY ENTRY

Zachary R. Putnam* and Robert D. Braun†

Discrete-event drag-modulation trajectory control is assessed for planetary entry using 
the analytical Allen-Eggers approximate solution to the equations of motion. A control 
authority metric for drag-modulation trajectory control systems is derived. Closed-form 
relationships are developed to assess range divert capability, identify jettison condition 
constraints for limiting peak acceleration and peak heat rate. Discrete-event drag-
modulation systems with single stages and an arbitrary number of stages are assessed. 

[View Full Paper] 
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AAS 15-753

HYPERBOLIC RENDEZVOUS AT MARS:

RISK ASSESSMENTS AND MITIGATION STRATEGIES

Ricky Jedrey,* Damon Landau† and Ryan Whitley‡

Given the current interest in the use of flyby trajectories for human Mars exploration, a 
key requirement is the capability to execute hyperbolic rendezvous. Hyperbolic rendez-
vous is used to transport crew from a Mars centered orbit, to a transiting Earth bound 
habitat that does a flyby. Representative cases are taken from future potential missions of 
this type, and a thorough sensitivity analysis of the hyperbolic rendezvous phase is per-
formed. This includes early engine cut-off, missed burn times, and burn misalignment. A 
finite burn engine model is applied that assumes the hyperbolic rendezvous phase is done 
with at least two burns. 

[View Full Paper] 
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AAS 15-760

EFFECTS OF ATMOSPHERIC DENSITY MODELS

AND ESTIMATION TECHNIQUES ON UNCONTROLLED

RE-ENTRY PREDICTION

Jin Haeng Choi,* Deok-Jin Lee,† Tae Soo No,‡ Sangil Ahn,§

Okchul Jung** and Hyeongjeong Yim††

This paper is focused on the effects of atmospheric density models and drag coefficient 
on the atmospheric re-entry prediction of an uncontrolled space object. For an accurate 
prediction of the impact time and location, the states of break-up point are obtained from 
its orbital motion to terminal location of impact. By using the Monte-Carlo method, the 
break-up event that generates a group of break-up particles is simply modeled with the 
consideration of empirical wind model. For the analysis of the effects of the density mod-
el on re-entry prediction, four difference density models and drag coefficients were used 
in the prediction of re-entry trajectory and break-up event. 

[View Full Paper] 
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AAS 15-765

PRELIMINARY DESIGN OF A MULTI-SPACECRAFT MISSION

TO INVESTIGATE SOLAR SYSTEM EVOLUTION

USING SOLAR ELECTRIC PROPULSION

Carlos M. A. Deccia,* Jeffrey S. Parker,† Stijn De Smet,‡

Jonathan F. C. Herman‡ and Ron Noomen§

This paper discusses a mission design concept that uses high-power solar electric propul-
sion (SEP) to re-direct one asteroid into the path of another, generating a low-velocity 
impact as a means of studying solar system evolution. In order to validate existing mod-
els and gain further insight in the processes involved, a multi-spacecraft approach is pro-
posed. This concept involves stationing a spacecraft at each asteroid, using them to 
achieve precise orbits of both asteroids, and one of the spacecraft with high-power SEP to 
deflect its asteroid into a low-velocity collision with the other. This study will show that 
it is possible to achieve asteroid collisions with a relative velocity below 10 km/s, allow-
ing direct observations to study solar system dynamics. 

[View Full Paper] 
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AAS 15-787

DYNAMICAL SUBSTITUTES OF EQUILIBRIUM POINTS

OF ASTEROIDS UNDER SOLAR RADIATION PRESSURE

Xiaosheng Xin,* Xiyun Hou,† Daniel J. Scheeres‡ and Lin Liu§

Previous works have focused on the hovering points or periodic motion for an imperfect 
solar sail near an asteroid with the Hill approximation. Equilibrium points and the associ-
ated invariant manifolds of a rotating nonspherical asteroid has also been investigated and 
the landing trajectories and maneuver strategies have been designed for specific asteroid. 
In the current study, we analysed the equivalent equilibrium points, i.e., dynamical sub-
stitutes of an asteroid under solar radiation pressure (SRP) in the asteroid rotating frame. 
The uniformly rotating triaxial ellipsoid is adopted to model the gravitation of the aster-
oid. First, the equations of motion with SRP included are constructed in the rotating 
frame and are then expanded with respect to the original equilibrium points without con-
sidering SRP to obtain the linearised equation for the dynamical substitutes. The linear-
ised solutions are numerically corrected to compute the dynamical substitute orbits. Sec-
ond, the stability properties of the dynamical substitutes are inspected by calculating the 
corresponding eigenvalues of the monodromy matrix. Third, we numerically integrate the 
unstable dynamical substitutes in the direction of the corresponding unstable vector to 
find the invariant manifolds that can intersect with the asteroid surface. This may serve as 
an option for future landing on the asteroid as well as in-situ observation. Throughout our 
analyses, the parameters of the triaxial ellipsoid model of the asteroid, such as the mass, 
size and period, and those corresponding to the SRP, such as the size of the solar panel, 
are all taken into account and varied in order to fully evaluate the possible results. 

[View Full Paper] 

                                                                
* Ph.D Candidate, School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 
210023, China. 
† Associate Professor, School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 
Jiangsu 210023, China. 
‡ A. Richard Seebass Endowed Chair Professor, Department of Aerospace Engineering Sciences, University of Colora-
do at Boulder, 429 UCB, Boulder, Colorado 80309, U.S.A. 
§ Professor, School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 
210023, China. 

309

http://www.univelt.com/book=5558


AAS 15-815

ORBITAL MANEUVERING SYSTEM DESIGN

AND PERFORMANCE FOR THE MAGNETOSPHERIC 

MULTISCALE FORMATION

Steven Z. Queen,* Dean J. Chai* and Sam Placanica*

The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, 
spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. A 
requirement for the operational success of the mission is the ability for the on-board sys-
tems to deliver precise maneuver adjustments. A six degree-of-freedom (6-DOF), closed-
loop control system was developed that tracks a time-varying, inertial velocity-target with 
less than 1% error down to a five millimeter-per-second lower-threshold (3�). This level 
of performance is achieved in-part through integrated and dynamically-compensated ac-
celerometer feedback with micro-gravity resolution. System performance is bounded 
through an extensive Monte Carlo simulation campaign that exercises the multi-body dy-
namics and non-linear sensitivities, and supported by some initial flight-results. 

[View Full Paper] 
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AAS 15-818

PHYSICS-BASED ASSIMILATIVE ATMOSPHERIC MODELING 

FOR SATELLITE DRAG SPECIFICATION AND FORECASTS

Marcin D. Pilinski,* Geoff Crowley,† Jonathan Wolfe,‡ Tim Fuller-Rowell,§

Tomoko Matsuo,** Mariangel Fedrizzi,†† Stan Solomon,‡‡ Liying Qian,§§

Jeff Thayer*** and Mihail Codrescu†††

We describe ongoing work to build a comprehensive nowcast and forecast system for 
specifying orbital drag conditions. The system outputs include neutral density, winds, 
temperature, composition, and the satellite drag derived from these parameters. This 
modeling tool is called the Atmospheric Density Assimilation Model or ADAM. ADAM 
is based on three state-of-the-art coupled models of the thermosphere-ionosphere running 
in real-time and uses assimilative techniques to produce a thermospheric nowcast. 
ADAM will also produce 72 hour predictions of the global thermosphere-ionosphere sys-
tem using the nowcast as the initial condition and using near real-time and predicted 
space weather data and indices as the inputs. We show here that the model drag nowcast 
is comparable to the current state-of-the-art empirical models even in a non-assimilative 
mode. We also show preliminary results of lower-boundary assimilation in the atmos-
pheric model as well as the improvements from using an assimilative specification of 
storm-time energy inputs. With additional assimilation and tuning, we expect model per-
formance to exceed the performance of current atmospheric models thus lowering the in-
track orbit errors associated with Low Earth Orbit predictions. 
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INDEX TO ALL AMERICAN ASTRONAUTICAL SOCIETY PAPERS
AND ARTICLES 1954 - 1992

This index is a numerical/chronological index (which also serves as a citation index)
and an author index. (A subject index volume will be forthcoming.)

It covers all articles that appear in the following:
Advances in the Astronautical Sciences (1957 - 1992)
Science and Technology Series (1964 -1992)
AAS History Series (1977 - 1992)
AAS Microfiche Series (1968 - 1992)
Journal of the Astronautical Sciences (1954 -September 1992)
Astronautical Sciences Review (1959 - 1962)

If you are in aerospace you will want this excellent reference tool which covers the first
35 years of the Space Age.

Numerical/Chronological/Author Index in three volumes,

Ordered as a set:
Library Binding (all three volumes) $120.00;
Soft Cover (all three volumes) $90.00.

Ordered by individual volume:
Volume I (1954 - 1978) Library Binding $40.00; Soft Cover $30.00;
Volume II (1979 - 1985/86) Library Binding $60.00; Soft Cover $45.00;
Volume III (1986 - 1992) Library Binding $70.00; Soft Cover $50.00.

Order from Univelt, Inc., P.O. Box 28130, San Diego, California 92198.
Web Site: http://www.univelt.com
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VOLUME 156 I, II, III & IV 

ADVANCES IN THE ASTRONAUTICAL SCIENCES, ASTRODYNAMICS 2015 

(2016)

(AAS/AIAA Astrodynamics Specialist Conference, August 9–13, 2015, Vail, 
Colorado, U.S.A.)

AAS 15-500 New Consolidated Files for Earth Orientation Parameters and Space Weather 
Data, David A. Vallado and TS. Kelso (Part I) 

AAS 15-501 Not Available (Withdrawn) 

AAS 15-502 Undamped Passive Attitude Stabilization and Orbit Management of a 3U 
CubeSat with Drag Sails, Siddharth S. Kedare and Steve Ulrich (Part II) 

AAS 15-503 Power StarTM: A New Approach to Space Solar Power, David C. Hyland and
Haithem A. Altwaijry (Part II) 

AAS 15-504 An Epitaxial Device for Momentum Exchange with the Vacuum State, 
David C. Hyland (Part II) 

AAS 15-505 Not Assigned 

AAS 15-506 Performance of Variable Step Numerical Integration across Eclipse Boundary 
Crossings for HAMR Objects, André Horstmann, Vitali Braun and Heiner Klinkrad 
(Part I) 

AAS 15-507 Impulsive Halo Transfer Trajectory Design around SEL1 Point with Multiple 
Constraints, Hao Zeng, Jingrui Zhang, Mingtao Li and Zixi Guo (Part III) 

AAS 15-508 Equilibrium Points of Elongated Celestial Bodies as the Perturbed Rotating Mass 
Dipole, Xiangyuan Zeng, Junfeng Li, Hexi Baoyin and Kyle T. Alfriend (Part I)

AAS 15-509 Influence Analysis of the Impacts and Frictions of the Joints of the Vibration  
Isolation Platform for Control Moment Gyroscope, Zixi Guo, Jingrui Zhang,  
Yao Zhang, Liang Tang and Xin Guan (Part II) 

AAS 15-510 Formation Flying Constant Low-Thrust Control Model Based on Relative Orbit 
Elements, Xinwei Wang, Yinrui Rao, Sihang Zhang and Chao Han (Part I) 

AAS 15-511 Semi-Analytical Spacecraft Dynamics around Planetary Moons,
J. Cardoso dos Santos, J. P. S. Carvalho, R. Vilhena de Moraes and
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Yunhe Wu, Stoian Borissov and Daniele Mortari (Part I)
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AAS 15-514 Geosynchronous Debris Conjunction Lead-Time Requirements for Autonomous
Low-Thrust Disposal Guidance, Paul V. Anderson and Hanspeter Schaub (Part I)

AAS 15-515 Not Available (Withdrawn) 

AAS 15-516 Trajectory and State Transition Matrix Analytic Continuation Algorithms,
James D. Turner, Abdullah Alnaqeb and Ahmad Bani Younes (Part I) 

AAS 15-517 Not Available (Withdrawn) 

* Unless otherwise indicated all papers appear in Volume 156, Advances in the Astronautical Sciences. Part I, Part II,
Part III and Part IV indicate in which part in the hard copy version of the proceedings that the paper appears.
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AAS 15-518 Using Taylor Differential Algebra in Mission Analysis: Benefits and Drawbacks, 
  Vincent Morand, Jean Claude Berges, François Thevenot, Emmanuel Bignon,

Pierre Mercier and Vincent Azzopardi (Part I)

AAS 15-519 LISA Pathfinder – Robust Launch Window Design for a Transfer towards a Large 
  Amplitude Orbit About the Sun-Earth Libration Point 1, Florian Renk,  
  Bram de Vogeleer and Markus Landgraf (Part III) 

AAS 15-520 Rendezvous via Differential Drag with Uncertainties in the Drag Model,
  Leonel Mazal, David Pérez, Riccardo Bevilacqua and Fabio Curti (Part IV) 

AAS 15-521 Not Available (Withdrawn) 

AAS 15-522 Trajectory Designs for a Mars Hybrid Transportation Architecture, Min Qu, 
  Raymond G. Merrill, Patrick Chai and David R. Komar (Part III) 

AAS 15-523 Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission 
  Design Using Chemical Propulsion, Jacob A. Englander, Matthew A. Vavrina and 
  David Hinckley Jr. (Part III) 

AAS 15-524 Orbit Determination and Differential-Drag Control of Planet Labs CubeSat 
  Constellations, Cyrus Foster, Henry Hallam and James Mason (Part I) 

AAS 15-525 Ground Intensity Distribution of the Power StarTM, David C. Hyland (Part II),

AAS 15-526 Near-Earth Asteroids 2006 RH120 and 2009 BD: Proxies for Maximally Accessible 
  Objects?, Brent W. Barbee and Paul W. Chodas (Part IV) 

AAS 15-527 Not Assigned 

AAS 15-528 Examination of Potential Sources of Small High Density Particles in Earth Orbit,
  Glenn E. Peterson, Alan B. Jenkin and Marlon E. Sorge (Part IV) 

AAS 15-529 A Multilayer Perceptron Hazard Detector for Vision-Based Autonomous Planetary 
  Landing, Paolo Lunghi, Marco Ciarambino and Michèle Lavagna (Part II) 

AAS 15-530 Multibody Dynamics Driving GNC and System Design in Tethered Nets for Active 
  Debris Removal, Riccardo Benvenuto, Samuele Salvi and Michèle R. Lavagna 
  (Part II) 

AAS 15-531 Spatial Resolution in Density Prediction for Differential Drag Maneuvering 
  Guidance, David Guglielmo, David Pérez, Riccardo Bevilacqua and  
  Leonel Mazal (Part IV) 

AAS 15-532 Mars Reconnaissance Orbiter Navigation Strategy for Dual Support of Insight 
  and Exomars Entry, Descent and Landing Demonstrator Module in 2016, 
  Sean V. Wagner, Premkumar R. Menon, Min-Kun J. Chung and  
  Jessica L. Williams (Part III) 

AAS 15-533 Rosetta: Imaging Tools, Practical Challenges and Evolution of Optical Navigation 
  Around a Comet, David S. Antal-Wokes and Francesco Castellini (Part IV) 

AAS 15-534 Containment of Moderate-Eccentricity Breakup Debris Clouds within a Maximum 
  Isotropic Spreading Speed Boundary, Brian W. Hansen and Felix R. Hoots  
  (Part IV) 

AAS 15-535 A Massively Parallel Bayesian Approach to Planetary Protection Trajectory 
  Analysis and Design, Mark S. Wallace (Part IV) 
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  Gim J. Der (Part I) 

AAS 15-539 Angles-Only Algorithms for Initial Orbit Determination Revisited, Gim J. Der  
  (Part I) 

AAS 15-540 Hybrid Methods around the Critical Inclination, Montserrat San-Martín,  
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  Rosario López, Juan F. San-Juan and Denis Hautesserres (Part I) 
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  Johannes Hacker, Peter C. Lai and Jiongyu Ying (Part II) 
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  Gao Tang, Fanghua Jiang and Junfeng Li (Part III) 
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  Tchebycheff Polynomial Algebra, Annalisa Riccardi, Chiara Tardioli and 
  Massimiliano Vasile (Part I) 

AAS 15-545 Comparison of Non-Intrusive Approaches to Uncertainty Propagation in Orbital 
  Mechanics, Chiara Tardioli, Martin Kubicek, Massimiliano Vasile,  
  Edmondo Minisci and Annalisa Riccardi (Part IV) 

AAS 15-546 Induced Fragmentation of Asteroids during Close Encounters, Bryan Tester and
  Massimiliano Vasile (Part IV) 

AAS 15-547 Feedback Tracking Control Based on a Trajectory-Specific Finite-Time Causal 
  Inverse, Nermin Caber, Anil Chinnan, Minh Q. Phan, Richard W. Longman and 
  Joachim Horn (Part II) 

AAS 15-548 Thrust Vector Control of Upper Stage with Uncertainty of the Centroid,
  Zhaohui Wang, Ming Xu, and Lei Jin and Xiucong Sun (Part II) 

AAS 15-549 Fractional Order Cayley Transforms for Dual Quaternions Based Pose 
  Representation, Daniel Condurache and Adrian Burlacu (Part II) 

AAS 15-550 Passive vs. Parachute System Trade Applied to the Multi-Mission Earth Entry 
  Vehicle Concept, Allen Henning, Robert Maddock and Jamshid Samareh  
  (Part IV) 

AAS 15-551 Mars Reconnaissance Orbiter Navigation Strategy for the Comet Siding Spring 
  Encounter, Premkumar R. Menon, Sean V. Wagner, Tomas J. Martin-Mur,  
  David C. Jefferson, Shadan M. Ardalan, Min-Kun J. Chung, Kyong J. Lee and 
  William B. Schulze (Part III) 

AAS 15-552 Mission Analysis for a Human Exploration Infrastructure in the Earth-Moon 
  System and Beyond, Florian Renk and Markus Landgraf (Part III) 
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  Haijun Shen and Carlos M. Roithmayr (Part IV) 
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  Robots With Obstacle Avoidance, Jianjun Luo, Lijun Zong, Baichun Gong and 
  Jianping Yuan (Part II) 
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  Sylvester Equations, Dong-Huei Tseng, Minh Q. Phan and Richard W. Longman 
  (Part II) 

AAS 15-563 Infrared-Sensor Modeling and GPU Simulation of Terminal Guidance for Asteroid 
  Intercept Missions, Joshua Lyzhoft, John Basart and Bong Wie (Part IV) 

AAS 15-564 Planetary Defense Mission Applications of Heavy-Lift Launch Vehicles,
  George Vardaxis and Bong Wie (Part IV) 

AAS 15-565 Sensitivity Analysis of the OSIRIS-REx Terminator Orbits to Random De-Sat 
  Maneuvers, Siamak G. Hesar, Daniel J. Scheeres and Jay W. McMahon  
  (Part IV) 

AAS 15-566 Not Assigned 
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  Concept for Dispersively Pulverizing Small Asteroids, B. Wie, B. Zimmerman,  
  P. Premaratne, J. Lyzhoft and G. Vardaxis (Part IV) 

AAS 15-568 A GPU-Accelerated Computational Tool for Asteroid Disruption Modeling and 
  Simulation, Ben J. Zimmerman and Bong Wie (Part IV) 
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AAS 15-572 Mode Analysis for Long-Term Behavior in a Resonant Earth–Moon Trajectory, 
  Cody Short, Kathleen Howell, Amanda Haapala and Donald Dichmann (Part I) 

AAS 15-573 Attitude Control of a Modular NPU-PhoneSat Based on Shape Actuation,
  Qiao Qiao, Jianping Yuan, Xin Ning and Baichun Gong (Part II) 

AAS 15-574 Not Assigned 

AAS 15-575 Gaussian Mixture Approximation of the Bearings-Only Initial Orbit Determination 
  Likelihood Function, Mark L. Psiaki, Ryan M. Weisman and Moriba K. Jah (Part I) 

AAS 15-576 Observability of Space Debris Objects, Carolin Frueh (Part IV)

AAS 15-577 The Probabilistic Admissible Region with Additional Constraints,
  Christopher W. T. Roscoe, Islam I. Hussein, Matthew P. Wilkins and  
  Paul W. Schumacher, Jr. (Part I) 
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AAS 15-579 Collision Risk Metrics for Large Dispersion Clouds During the Launch COLA 
  Gap, Alan B. Jenkin (Part I) 

AAS 15-580 Targeting the Martian Moons via Direct Insertion into Mars’ Orbit, Davide Conte 
  and David B. Spencer (Part III) 

AAS 15-581 Volumetric Encounter Analysis Enhancements, Salvatore Alfano and  
  Daniel Oltrogge (Part I) 

AAS 15-582 Global Optimization of Interplanetary Trajectories in the Presence of Realistic 
  Mission Constraints, David Hinckley Jr., Jacob A. Englander and Darren Hitt 
  (Part III) 

AAS 15-583 Track-to-Track Association Using Information Theoretic Criteria, Islam I. Hussein, 
  Christopher W. T. Roscoe, Matthew P. Wilkins and Paul W. Schumacher, Jr. 
  (Part I)

AAS 15-584 Petascale Discovery of Passively Controlled Satellite Constellations for Global 
  Coverage, William R. Whittecar, Marc D. DiPrinzio, Lake A. Singh,  
  Matthew P. Ferringer and Patrick Reed (Part IV) 

AAS 15-585 Efficient Maneuver Placement for Automated Trajectory Design, Damon Landau 
  (Part III) 

AAS 15-586 Trending in Probability of Collision Measurements, J. J. Vallejo, M. D. Hejduk and 
  J. D. Stamey (Part IV) 

AAS 15-587 Paramat: Parallel Processing with the General Mission Analysis Tool,
  Darrel J. Conway (Part IV) 

AAS 15-588 Earth-Mars Transfers through Moon Distant Retrograde Orbit, Davide Conte, 
  Marilena Di Carlo, Koki Ho, David B. Spencer and Massimiliano Vasile (Part III) 

AAS 15-589 Not Available (Withdrawn) 

AAS 15-590 Many-Revolution Low-Thrust Orbit Transfer Computation Using Equinoctial  
  Q-Law Including J2 and Eclipse Effects, Gábor I. Varga and  
  José M. Sánchez Pérez (Part III) 

AAS 15-591 Optimizing the Solar Orbiter 2018 October Trajectory to Increase the Data 
  Return, José M. Sánchez Pérez, Waldemar Martens and Yves Langevin (Part III) 

AAS 15-592 Not Available (Withdrawn) 

AAS 15-593 A Two-Tiered Approach to Spacecraft Positioning from Significantly Biased 
  Gravity Gradient Measurements, Xiucong Sun, Pei Chen, Christophe Macabiau 
  and Chao Han (Part II) 

AAS 15-594 Analytical Low-Thrust Transfer Design Based on Velocity Hodograph,
  D. J. Gondelach and R. Noomen (Part III) 

AAS 15-595 Fast and Efficient Sail-Assisted Deorbiting Strategy for LEO Satellites in Orbits 
  Higher Than 700 km, Sergey Trofimov and Mikhail Ovchinnikov (Part II) 

AAS 15-596 Fixed-Time Control Design for Spacecraft Attitude Stabilization, Li Yuan,  
  Boyan Jiang, Chuanjiang Li, Guangfu Ma and Yanning Guo (Part II) 

AAS 15-597 Not Assigned 

AAS 15-598 Identifying Accessible Near-Earth Objects for Crewed Missions with Solar 
  Electric Propulsion, Stijn De Smet, Jeffrey S. Parker, Jonathan F. C. Herman, 
  Jonathan Aziz, Brent W. Barbee and Jacob A. Englander (Part III) 
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AAS 15-599 Decreasing the Frequency of Lunar Reconnaissance Orbiter Momentum Unloads 
  Using Solar Array Pointing and Attitude Maneuvers to Control Angular 
  Momentum, Russell DeHart and Milton Phenneger (Part II) 

AAS 15-600 Periapsis Poincaré Maps for Preliminary Trajectory Design in Planet-Moon 
  Systems, Diane C. Davis, Sean M. Phillips and Brian P. McCarthy (Part III) 

AAS 15-601 Lyapunov Based Attitude Constrained Control of a Spacecraft,
  Monimoy Bujarbaruah and Srikant Sukumar (Part II) 

AAS 15-602 Posterior Distribution of an Orbital Ensemble from Position-Only Observations, 
  Liam Healy and Christopher Binz (Part IV) 

AAS 15-603 Review of Mission Design and Navigation for the Van Allen Probes Primary 
  Mission, Justin A. Atchison and Fazle E. Siddique (Part I) 

AAS 15-604 Orbit and Attitude Stability Criteria of Solar Sail on the Displaced Orbit,
  Junquan Li, Mark A. Post and George Vukovich (Part I) 

AAS 15-605 Analysis of the Gauss-Bingham Distribution for Attitude Uncertainty Propagation, 
  Jacob E. Darling and Kyle J. DeMars (Part II) 

AAS 15-606 A New Architecture for Extending the Capabilities of the Copernicus Trajectory 
  Optimization Program, Jacob Williams (Part III) 

AAS 15-607 Unscented Optimization, I. Michael Ross, Ronald J. Proulx and Mark Karpenko 
  (Part III) 

AAS 15-608 Design, Implementation, and Outcome of Messenger’s Trajectory from Launch to
  Mercury Impact, Dawn P. Moessner and James V. McAdams (Part III) 

AAS 15-609 High-Fidelity Low-Thrust SEP Trajectories from Earth to Jupiter Capture,
  Sean Patrick and Alfred E. Lynam (Part III) 

AAS 15-610 Satellite Formation-Keeping about Libration Points in the Presence of System 
  Uncertainties, Mai Bando, Hamidreza Nemati and Shinji Hokamoto (Part I) 

AAS 15-611 Lissajous Orbit Control for the Deep Space Climate Observatory Sun-Earth L1 
  Libration Point Mission, Craig E. Roberts, Sara Case and John Reagoso (Part III) 

AAS 15-612 Not Assigned 

AAS 15-613 Early Mission Maneuver Operations for the Deep Space Climate Observatory 
  Sun-Earth L1 Libration Point Mission, Craig E. Roberts, Sara Case,  
  John Reagoso and Cassandra Webster (Part III) 

AAS 15-614 Application of the Regularized Particle Filter for Attitude Determination Using 
  Real Measurements of CBERS-2 Satellite, William R. Silva, Hélio K. Kuga and 
  Maria C. Zanardi (Part II) 

AAS 15-615 Isolating Blocks as Computational Tools in the Circular Restricted Three-Body 
  Problem, Rodney L. Anderson, Robert W. Easton and Martin W. Lo (Part I) 

AAS 15-616 Rapid Generation of Optimal Asteroid Powered Descent Trajectories via Convex 
  Optimization, Robin Pinson and Ping Lu (Part III) 

AAS 15-617 Distributed Computation for Near Real-Time Footprint Generation,
  Christopher B. McGrath, Mark Karpenko and Ronald J. Proulx (Part IV) 

AAS 15-618 End of Life Disposal for Three Libration Point Missions through Manipulation of 
  the Jacobi Constant and Zero Velocity Curves, Jeremy D. Petersen and 
  Jonathan M. Brown (Part I) 

AAS 15-619 Organizing Ballistic Orbit Classes around Small Bodies, Benjamin F. Villac, 
  Rodney L. Anderson and Alex J. Pini (Part IV) 
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AAS 15-620 Agility Envelopes for Reaction Wheel Spacecraft, Mark Karpenko and  
  Jeffery T. King (Part II) 

AAS 15-621 Not Assigned 

AAS 15-622 Nonlinear Reduced Order Dynamics of Spacecraft Relative Motion for a Circular 
  Chief Orbit, Eric A. Butcher and T. Alan Lovell (Part IV) 

AAS 15-623 Use of Nonlinearities for Increased Observability in Relative Orbit Estimation, 
  Jingwei Wang, Eric A. Butcher and T. Alan Lovell (Part IV) 

AAS 15-624 Guidance and Navigation of a Callisto-Io-Ganymede Triple Flyby Jovian Capture, 
  Alan M. Didion and Alfred E. Lynam (Part III) 
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AAS 15-626 Design and Applications of Solar Sail Periodic Orbits in the Non-Autonomous 
  Earth-Moon System, Jeannette Heiligers, Malcolm Macdonald and  
  Jeffrey S. Parker (Part I) 

AAS 15-627 A Motion Planning Method for Spacecraft Attitude Maneuvers Using Single 
  Polynomials, Albert Caubet and James D. Biggs (Part II) 

AAS 15-628 A Micro-Slew Concept for Precision Pointing of the Kepler Spacecraft,
  Mark Karpenko, I. Michael Ross, Eric T. Stoneking, Kenneth L. Lebsock and  
  Neil Dennehy (Part II) 

AAS 15-629 Switching Paths at the Lunar ‘Router’: Finding Very Low-Cost Transfers between 
  Useful Trajectory Sequences in the Earth-Moon System, Timothy P. McElrath 
  and Rodney L. Anderson (Part III) 

AAS 15-630 Analysis of Hyper-Pseudospectral Transformation of Random Variables,
  Paul J. Frontera, Ronald J. Proulx, Mark Karpenko and I. Michael Ross (Part IV) 

AAS 15-631 Maneuver Detection with Event Representation Using Thrust-Fourier 
  Coefficients, Hyun Chul Ko and Daniel J. Scheeres (Part IV) 

AAS 15-632 SEP Mission Design Space for Mars Orbiters, Ryan C. Woolley and  
  Austin K. Nicholas (Part I) 

AAS 15-633 Not Available (Withdrawn) 

AAS 15-634 Engineering Messenger’s Grand Finale at Mercury –The Low-Altitude Hover 
  Campaign, James V. McAdams, Christopher G. Bryan, Stewart S. Bushman, 
  Andrew B. Calloway, Eric Carranza, Sarah H. Flanigan, Madeline N. Kirk,  
  Haje Korth, Dawn P. Moessner, Daniel J. O’Shaughnessy and  
  Kenneth E. Williams (Part III) 

AAS 15-635 Noise Quantification in Optical Observations of Resident Space Objects for 
  Probability of Detection and Likelihood, François Sanson and Carolin Frueh  
  (Part IV) 

AAS 15-636 Navigation Strategy and Results for New Horizons’ Approach and Flyby of the
  Pluto System, B. Williams, F. Pelletier, D. Stanbridge, J. Bauman, K. Williams,  
  C. Jackman, D. Nelson, P. Dumont, P. Wolff, C. Bryan, A. Taylor and Y. Guo,  
  G. Rogers, R. Jensen and S. A. Stern, H. A. Weaver, L. A. Young, K. Ennico and 
  C. B. Olkin (Part III) 

AAS 15-637 Dynamical Evolution about Asteroids with High Fidelity Gravity Field and 
  Perturbations Modeling, Andrea Colagrossi, Fabio Ferrari, Michèle Lavagna and 
  Kathleen Howell (Part I) 

AAS 15-638 Node Placement Capability for Spacecraft Trajectory Targeting in an Ephemeris 
  Model, Christopher Spreen, Kathleen Howell and Belinda Marchand (Part III) 
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AAS 15-639 Minimization of the Kullback-Leibler Divergence for Nonlinear Estimation,
  Jacob E. Darling and Kyle J. DeMars (Part I) 

AAS 15-640 Establishing a Formation of Small Satellites in a Lunar Flower Constellation, 
  Lauren McManus and Hanspeter Schaub (Part IV) 

AAS 15-641 Creating an End-to-End Simulation for the Multi-Purpose Crewed Vehicle and 
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  Anthony S. Craig, Jeremy D. Shidner, Badejo O. Adebonojo, Jr.,  
  Richard G. Winski and Richard W. Powell (Part III) 
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  Juliana D. Feldhacker, Brandon A. Jones, Alireza Doostan, Daniel J. Scheeres 
  and Jay W. McMahon (Part IV) 
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AAS 15-646 Analysis of Attitude Dynamics of Spinning Satellites in an Elliptical Orbit,
  Dayung Koh and Henryk Flashner (Part II) 
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  Optimization Method, Sihang Zhang, Hongguang Yang and Chao Han (Part III) 

AAS 15-648 Analysis and Comparison on UKF and BLS for Orbit Determination, Lu Deng, 
  Xiucong Sun and Chao Han (Part I) 
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  Madeline N. Kirk, Sarah H. Flanigan, Daniel J. O’Shaughnessy, 
  Stewart S. Bushman and Paul E. Rosendall (Part III) 
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AAS 15-654 Not Available (Withdrawn) 

AAS 15-655 A Polyhedral-Potential Approach for Educational Simulations of Spacecraft in
  Orbit About Comet 67P/Churyumov-Gerasimenko, Jason M. Pearl and  
  Darren L. Hitt (Part IV) 

AAS 15-656 Generalized Attitude Model for Momentum-Biased Solar Sail Spacecraft,
  Yuichi Tsuda, Go Ono, Kosuke Akatsuka, Takanao Saiki, Yuya Mimasu,  
  Naoko Ogawa and Fuyuto Terui (Part II) 

AAS 15-657 The Europa Mission: Multiple Europa Flyby Trajectory Design Trades and 
  Challenges, Try Lam, Juan J. Arrieta-Camacho and Brent B. Buffington (Part I) 

AAS 15-658 Trajectory Design of the Time Capsule to Mars Student Mission,
  Jonathan D. Aziz, Sean Napier, Stijn De Smet and Jeffrey S. Parker (Part III) 
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